DOI QR코드

DOI QR Code

Development of Ethanol Producing Saccharomyces cerevisiae Strain Using High Concentration Galactose

고농도 Galactose로부터 에탄올을 생산하는 Saccharomyces cerevisiae 균주의 육성

  • Kim, Ju-Hye (Environmental Toxicology Research Center, Korea Institute of Toxicology) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 김주혜 (한국독성연구소 환경독성연구센타) ;
  • 윤민호 (충남대학교 농업생명과학대학 생물환경화학과)
  • Received : 2010.08.12
  • Accepted : 2011.02.24
  • Published : 2011.03.31

Abstract

A galactose-fermenting yeasts, Saccharomyces cerevisiae No. 9, was selected by screening their abilities to produce carbon dioxide gas when grown on galactose. The selected strain, No. 9 and the reference strains NRRL Y-1528 which was exceptionally resistant to high concentration of substrate, were acclimated on sugars such as glucose, mannose, and galactose, and then their ethanol productivities were investigated during fermentation on these three carbon sources. Ethanol productivity of the strain No. 9 reached to the maximum levels after 18 h of fermentation and the ethanol yield was from 36 to 38% when presented as $[EtOH]_{max}/[Sugar]_{ini}(g/g)$, regardless of the conditions of acclimation. From the results obtained by acclimation and fermentation, it was concluded that the ethanol yields from galactose were not affected by the sugars acclimated. Improvements of the strain S. cerevisiae No. 9 were attempted to increase the fermentation efficiency and/or ethanol yields on high concentration of substrate by the conventional mutation methods employing methanesulfonic acid, ethyl ester (EMS). Mutants, Mut-5 (SJ1-40), -17 (LK4-25) and -24 (LK2-48) fermented galactose at the concentration of 20% in the levels of higher 39.9~51.6% than the mother strain, No. 9, however, their ethanol yields never exceeded those of the reference strain.

에탄올을 생성하는 고농도 galactose 발효 효모 Saccharomyces cerevisiae No. 9를 선발하여 비교균주인 S. cerevisiae NRRL Y-1528과 함께 glucose, mannose, galactose에서 순치배양하고, 이어서 이들 3개의 탄소원을 기질로 사용하여 발효 효율을 평가하였다. 모균주인 No. 9의 에탄올 생산은 초기 12시간에는 천천히 상승하다가 18시간 후에 가장 높은 수준에 도달하였으며, 그 수율은 $[EtOH]_{max}/Sugar]_{ini}(g/g)$을 퍼센트로 환산하였을 때 glucose, galactose, mannose의 3개 기질에서 비교용 균주 NRRL Y-1528와 비슷한 36~38%로 수준이었고 실험한 3 균주 모두 galactose 발효에 있어서 탄소원의 종류에 따라 순치배양 조건이 에탄올 수율에 영향을 미치지 않았다. 전통적인 EMS 처리에 의하여 모균주인 galactose 발효성 효모 S. cerevisiae No. 9로부터 에탄올 발효력이 향상된 변이주 Mut-5 (SJ1-40), -17 (LK4-25) 및 -24 (LK2-48) 3개주를 선발하였다. 기질인 10, 15, 20% galactose를 이용한 에탄올 발효능을 실험 하였을때 모균주 No. 9 및 변이주에서도 galactose의 농도를 증가시킬수록 감소하는 경향을 나타내었다. Galactose 20% 농도에서 변이주는 모균주보다 에탄올 발효율이 39.9~51.6% 높았으나, 비교용 균주 S. cerevisiae NRRL Y-1528의 에탄올 발효력에는 미치지 못하였다.

Keywords

References

  1. Agbogbo FK, Coward-Kelly G, Torry-Smith M, and Wengera KS (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem 41, 2333-2336. https://doi.org/10.1016/j.procbio.2006.05.004
  2. Farone WA and Cuzens JE (1997) Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. Biotechnol Adv 15, 548-549.
  3. Grabek-Lejko D, Ryabova OB, Oklejewicz B, Voronovsky ATY, and Sibirny AA (2006) Plate ethanol-screening assay for selection of the Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability for xylose alcoholic fermentation. J Ind Microbiol Biotechnol 33, 934-940. https://doi.org/10.1007/s10295-006-0147-7
  4. Keating JD, Robinson J, Bothast RJ, Saddler JN, and Mansfield SD (2004) Characterization of a unique ethanologenic yeast capable of fermenting galactose. Enzyme Technol 35, 242-253. https://doi.org/10.1016/j.enzmictec.2004.04.015
  5. Kordowska-Wiater M and Targonski Z (2002) Ethanol fermentation on glucose/xylose mixture by co-cultivation if restricted glucose catabolite repressed mutants of Pichia sripitis with respiratory deficient mutants of Saccharomyces cerevisiae. Acta Microbiol Pilinica 51, 345-352.
  6. Lawrence CW (2002) Classical mutagenesis techniques. Method Enzymol 350, 189-199. https://doi.org/10.1016/S0076-6879(02)50963-0
  7. Lee KS, Kweon DH, and Jin YS. (2010) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3), DOI 10.1002/ bit. 22988.
  8. Majumdar S, Ghatak J, Mukherji S, Bhattacharjee H, and Bhaduri A(2004) UDP galactose-4-epimerase. Eur J Biochem 271, 753-759. https://doi.org/10.1111/j.1432-1033.2003.03974.x
  9. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426-428. https://doi.org/10.1021/ac60147a030
  10. Nichols NN, Dien BS, and Bothast RJ (2003) Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis. J Ind Microbiol Biotechnol 30, 315-321. https://doi.org/10.1007/s10295-003-0055-z
  11. Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, and Ito K (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90, 313-320. https://doi.org/10.1016/S1389-1723(00)80087-0
  12. Ostergaard S, Olsson L, and Nielsen J (2001) In vivo dynamics of galactose metabolism in Saccharomyces: metabolic flux and metabolite levels. Biotechnol Bioeng 73, 412-425. https://doi.org/10.1002/bit.1075
  13. Schmidt D, Anders A, Klose C, Lilie H, Stubbs MT, Golbik R, and Breunig KD (2007) An unconventional Rossman-fold in the Gal4 regulator Gal80 binds NAD(P) and is involved in Gal4-Gal80 interaction. Yeast 24(S1), S77: 08-1.
  14. Valadi H, Larsson C, and Gustafsson L (1998) Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50, 434-439. https://doi.org/10.1007/s002530051317
  15. Wei W, Wang S, Zhu X, and Wan W (1999) Isolation of a mutant of Kluyveromyces sp. Y-85 resistant to catabolite repression. J Biosci Bioeng 87, 816-818. https://doi.org/10.1016/S1389-1723(99)80159-5
  16. Wilkins MR, Mueller M, Eichling S, and Banat IM (2008) Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem 43, 346-350. https://doi.org/10.1016/j.procbio.2007.12.011
  17. Yan L, Chen G, and Liu W (2010) Alterations in the interaction between GAL4 and GAL80 effect regulation of the yeast GAL Regulon mediated by the F box protein Dsg1. Curr Microbiol 61, 210-216. https://doi.org/10.1007/s00284-010-9598-1

Cited by

  1. Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17 vol.37, pp.9, 2014, https://doi.org/10.1007/s00449-014-1161-1
  2. 식음료폐기물을 이용한 바이오에탄올 생산 vol.26, pp.5, 2011, https://doi.org/10.7841/ksbbj.2011.26.5.417