References
- Babic V, Datla RS, Scoles GJ, and Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17, 183-188. https://doi.org/10.1007/s002990050375
- Bhalla PL and Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protocol 3, 181-189. https://doi.org/10.1038/nprot.2007.527
- Cardoza V and Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyls segment explants. Plant Cell Rep 21, 599-604.
- Chang CC and Schmidt DR (1991) Initiation and proliferation of carrot callus using a combination of antibiotics. Planta 185, 523-526.
-
Chi GL, Barfield DG, Sim GE, and Pua EC (1990) Effect of
$AgNO_3$ and aminoethoxyvinylglycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep 9, 195-198. - Damgaard O, Jensen LH, and Rasmussen OS (1997) Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Transgenic Res 6, 279-288. https://doi.org/10.1023/A:1018458628218
- De Block M, De Brouwer D, and Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91, 694-704. https://doi.org/10.1104/pp.91.2.694
- Fry J, Barnason A, and Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep 6, 321-325. https://doi.org/10.1007/BF00269550
- Hoekema A, Hirsch PR, Hooykaas PJJ, and Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and Tregion of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179-180.
- Hood EE, Gelvin SB, Melchers LS, and Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2, 208-218. https://doi.org/10.1007/BF01977351
- Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Bio Rep 5, 387-405. https://doi.org/10.1007/BF02667740
- Kamal GB, Illich KG, and Asadollah A (2007) Effects of genotype, explants type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. African J Biotechnol 6, 861-867.
- Kim H, Lee H, Go YS, Roh KH, Lee YH, Jang YS, and Suh MC (2010) Development of herbicide-tolerant Korean rapeseed (Brassica napus L.) cultivars. J Plant Biotechnol 37, 319-326. https://doi.org/10.5010/JPB.2010.37.3.319
- Koncz C and Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383-396. https://doi.org/10.1007/BF00331014
- Moloney MM, Walker JM, and Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8, 238-242. https://doi.org/10.1007/BF00778542
- Munir M, Rashid H, Chaudhry Z, and Bukhari MS (2008) Callus formation and plantlets regeneration from hypocotyls of Brassica napus by using different media combinations. Pak J Bot 40, 309-315.
- Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Narasimhulu SB and Chopra VL (1988) Species specific shoot regeneration response of cotyledonary explants of Brassicas. Plant Cell Rep 7, 104-106. https://doi.org/10.1007/BF00270115
- Poulsen GB (1996) Genetic transformation of Brassica. Plant Breeding 115, 209-225. https://doi.org/10.1111/j.1439-0523.1996.tb00907.x
- Roh KY, Lee KJ, Park JS, Kim JB, Lee SB, and Suh SC (2010) Effect of cultivar and ascorbic acid on in vitro shoot regeneration and development of bombardment-mediated plastid transformation of tomato (Lycopersicon esculentum). J Plant Biotechnol 37, 77-83. https://doi.org/10.5010/JPB.2010.37.1.077
- Schreuder MM, Raemakers CJJM, Jacobsen E, and Visser RGF (2001) Efficient production of transgenic plants by Agrobacteriummediated transformation of cassava (Manihot esculenta Crantz). Euphytica 120, 35-42. https://doi.org/10.1023/A:1017530932536
- Voelker TA, Hayes TR, Cranmer AM, Turner JC, and Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. The Plant J 9, 229-241. https://doi.org/10.1046/j.1365-313X.1996.09020229.x
- Williams J, Pink DAC, and Biddington NL (1990) Effect of silver nitrate on long-term culture and regeneration of callus from Brassica oleracea var. gemmifera. Plant Cell Tiss Org 21, 61-66. https://doi.org/10.1007/BF00034493
- Zhang FL, Takahata Y, and Xu JB (1998) Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis) (1998) Plant Cell Rep 17, 780-786. https://doi.org/10.1007/s002990050482
Cited by
- Gene Expression Profiling of Oilseed Rape Embryos Using Microarray Analysis vol.55, pp.4, 2012, https://doi.org/10.3839/jabc.2012.036
- Effects of different types and ages of explants and cytokinins on shoot regeneration in Brassica juncea L. vol.40, pp.2, 2013, https://doi.org/10.5010/JPB.2013.40.2.072
- ) from Barley Enhances Cold Tolerance in Transgenic rapeseed plants vol.58, pp.4, 2015, https://doi.org/10.3839/jabc.2015.051
- Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance vol.147, pp.None, 2011, https://doi.org/10.1016/j.plaphy.2019.12.032