A Simulation-Based Investigation of an Advanced Traveler Information System with V2V in Urban Network

시뮬레이션기법을 통한 차량 간 통신을 이용한 첨단교통정보시스템의 효과 분석 (도시 도로망을 중심으로)

  • Received : 2010.12.15
  • Accepted : 2011.06.07
  • Published : 2011.10.31

Abstract

More affordable and available cutting-edge technologies (e.g., wireless vehicle communication) are regarded as a possible alternative to the fixed infrastructure-based traffic information system requiring the expensive infrastructure investments and mostly implemented in the uninterrupted freeway network with limited spatial system expansion. This paper develops an advanced decentralized traveler information System (ATIS) using vehicle-to-vehicle (V2V) communication system whose performance (drivers' travel time savings) are enhanced by three complementary functions (autonomous automatic incident detection algorithm, reliable sample size function, and driver behavior model) and evaluates it in the typical $6{\times}6$ urban grid network with non-recurrent traffic state (traffic incident) with the varying key parameters (traffic flow, communication radio range, and penetration ratio), employing the off-the-shelf microscopic simulation model (VISSIM) under the ideal vehicle communication environment. Simulation outputs indicate that as the three key parameters are increased more participating vehicles are involved for traffic data propagation in the less communication groups at the faster data dissemination speed. Also, participating vehicles saved their travel time by dynamically updating the up-to-date traffic states and searching for the new route. Focusing on the travel time difference of (instant) re-routing vehicles, lower traffic flow cases saved more time than higher traffic flow ones. This is because a relatively small number of vehicles in 300vph case re-route during the most system-efficient time period (the early time of the traffic incident) but more vehicles in 514vph case re-route during less system-efficient time period, even after the incident is resolved. Also, normally re-routings on the network-entering links saved more travel time than any other places inside the network except the case where the direct effect of traffic incident triggers vehicle re-routings during the effective incident time period and the location and direction of the incident link determines the spatial distribution of re-routing vehicles.

최근 보다 경제적이고 쉽게 적용이 가능한 차량간 무선통신과 같은 첨단 기술들은 고비용의 교통시설과 미래의 교통수요에 대한 공간적 시스템 확장이 제한적인 고속도로에서 주로 시행되고 있는 중앙제어식 인프라기반 교통정보시스템의 가능한 대안으로 간주되고 있다. 본 논문은 차량간 무선통신을 이용한 분산식 첨단교통정보시스템을 개발하고 제안된 시스템의 효과 (운전자의 통행시간단축)를 향상시키는 세가지 보조기능(독립자동유고감지알고리즘, 실험차량 샘플 모델, 운전자행태 모델)을 소개하고자 한다. 그리고 전형적인 $6{\times}6$ 도시형 도로망에서 미시적 시뮤레이션모델(VISSIM)을 이용해서 세가지 중요한 패러미터(교통류, 무선통신 라디오 레인지, 통신차량의 보급율)에 따른 그 효과를 교통사고 시나리오에서 평가하고자 한다. 본 논문의 연구결과로는 세가지 시스템 패러미터가 증가함에 따라 보다 많은 무선통신 차량이 교통데이터 전송에 관련되었고 데이터전송 속도도 더 빨라짐을 보였다. 또한 통신차량들은 동적으로 현재의 교통상황 파악과 교통사고로 야기된 정체지역을 우회하는 최적의 경로를 탐색함으로써 운전자의 통행시간을 단축시키는 결과를 보였다. 교통사고로 인한 혼잡교통류 상황에 순간적으로 반응(통행시간 데이터베이스 갱신과 최적 경로 탐색)하는 차량들을 중심으로, 상대적으로 교통량이 적은 상황에서는 보다 시스템 효율적인 시간대에 운전자들이 경로를 변경하는 행태를 보인 반면에 교통량이 많은 상황에서는 많은 운전자들이 덜 효율적인 시간대, 예를 들면 교통사고가 해소된 후에도 경로를 변경하는 경우가 목격되었다. 따라서 차량당 평균통행시간단축은 교통수요와 밀접한 관계를 보였다. 그리고 실제 교통사고 시간 동안 교통사고의 직접적인 영향에 의해서 경로를 변경하는 통신차량들을 제외하면 도로망에 진입하는 차로에 있는 통신차량이 도로망내에 있는 다른 통신차량보다 통행시간이 짧은 것으로 나타났다. 또한 교통사고지점의 위치와 방향은 경로변경차량의 공간적인 분포를 결정하는 것으로 나타났다.

Keywords

References

  1. 김형수.신민호.남범석.David J. Lovell (2008), "애드혹 네트워크 기반 교통 시스템을 위한 컴퓨터 모의실험 환경 설계", 대한교통학회지, 제26권 제6호, 대한교통학회, pp.93-101.
  2. 김회경 (2011), "Development and evaluation of Advanced Framework of ATIS model", 교통연구, 제18권 제1호, 한국교통연구원, pp.75-88.
  3. Ben-Akiva, M., A. Palma, and I. Kaysi (1991), "Dynamic network models and driver information systems", Transportation Research Part A, Vol. 25, No. 5, pp.251-266. https://doi.org/10.1016/0191-2607(91)90142-D
  4. Ben-Akiva, M., M. J. Bergman, A. J. Daly, and R. Ramaswamy (1984), "Modeling inter urban route choice behavior", Proceedings of 9th International Symposium on Transportation and Traffic Theory, VNU Science Press, pp.299-330.
  5. Chen, P. S. and H. S. Mahmassani (1991), "Reliability of real-time information systems for route choice decisions in a congested traffic network: some simulation experiments", Proceedings of IEEE Conference on Navigation and Information Systems, IEEE, pp.849-856.
  6. Chiu, Y. C. and H. S. Mahmassani (2002), "Hybrid real-time dynamic traffic assignment approach for robust network performance", Transportation Research Record: Journal of the Transportation Research Board, No. 1783, Transportation Research Board of the National Academies, Washington, D.C., pp.89-97.
  7. Chiu, Y. C. and H. S. Mahmassani (2003), "Routing profile updating strategies for online hybrid dynamic traffic assignment operation", Transportation Research Record: Journal of the Transportation Research Board, No. 1857, Transportation Research Board of the National Academies, Washington, D.C., pp.39-47.
  8. Dubey, B. B., N. Chauhan and S. Pant (2011), "Effect of position of fixed infrastructure on data dissemination in VANETs", International Journal of Research and Reviews in Computer Science (IJRRCS), Vol. 2, No. 2, pp.482-486.
  9. Dia, H. and S. Panwai (2007), "Modelling drivers' compliance and route choice behaviour in response to travel information", Journal of Nonlinear Dynamics, Vol. 49, No. 4, pp.493-509. https://doi.org/10.1007/s11071-006-9111-3
  10. Eichler, S., B. Ostermaier, C. Schroth, and T. Kosch (2005), "Simulation of car-to-car messaging: analyzing the impact on road traffic", Proceedings of 13th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication, IEEE, pp.507-510.
  11. Guin, A. (2004), "An Incident Detection Algorithm Based on a Discrete State Propagation Model of Traffic Flow", Ph.D. Dissertation in Civil Engineering, Georgia Institute of Technology.
  12. Hawas, Y. E. and H. S. Mahmassani (1996), "Comparative analysis of robustness of centralized and distributed network route control systems in incident situations", Transportation Research Record: Journal of the Transportation Research Board, No. 1537, Transportation Research Board of the National Academies, Washington, D.C., pp.83-90.
  13. He, R. R., H. X. Liu, A. L. Kornhauser, and B. Ran (2002), "Temporal and Spatial Variability of Travel Time", Center for Traffic Simulation Studies, University of California at Irvine.
  14. Hormann, Y., H. P. Grossmann, W. H. Khalifa, M. Salah, and O. H. Karam (2004), "Simulator for inter-vehicle communication based on traffic modeling", Proceedings of Intelligent Vehicles Symposium, IEEE, pp.99-104.
  15. Hui, F. and P. Mohapatra (2005), "Experimental characterization of multi-hop communications in vehicular ad hoc network", Proceedings of the 2nd ACM International Workshop on Vehicular ad hoc Networks, Association for Computing Machinery, pp.85-86.
  16. Krajzewicz, D., D. T. Boyom, and P. Wagner (2008), "Evaluation of the performance of citywide, autonomous route choice based on vehicle-to-vehicle communication", Proceedings of 87th TRB Annual Meeting, TRB.
  17. Kim, H. (2007), "A Simulation Framework for Traffic Information Dissemination in Ubiquitous Vehicular Ad Hoc Networks", Ph.D. Dissertation in Civil and Environmental Engineering, University of Maryland.
  18. Kim, H. K., M. P. Hunter, and R. M. Fujimoto (2009), "A simulation-based investigation of a dynamic advanced traveler information system", Proceedings of 2009 Winter Simulation Conference, WSC, Austin, TX.
  19. Kim, H. K. (2010), "Development and Evaluation of Advanced Traveler Information System (ATIS) Using Vehicleto- Vehicle (V2V) Communications System", Ph.D. Dissertation in Civil Engineering, Georgia Institute of Technology.
  20. Krajzewicz, D., D. T. Boyom, and P. Wagner (2008), "Evaluation of the performance of city-wide, autonomous route choice based on vehicle-to-vehiclecommunication", Proceedings of 87th Annual Meeting of the Transportation Research Board, Washington, D.C.
  21. Mahmassani, H. S. (2001), "Dynamic network traffic assignment and simulation methodology for advanced system management applications", Networks and Spatial Economics, Vol. 1, No. 3, pp.267-292. https://doi.org/10.1023/A:1012831808926
  22. Michael, L. B. and M. Nakagawa (1996), "Multi-hop for inter-vehicle communication over multiple lanes", Proceedings of Intelligent Vehicles Symposium, IEEE, pp.284-288.
  23. Ng, M. and S. T. Waller (2010), "A static network level model for the information propagation in vehicular ad hoc networks", Transportation Research Part C: Emerging Technologies, Vol. 18, No. 3, pp.393-407. https://doi.org/10.1016/j.trc.2010.02.006
  24. Petty, K., P. J. Bickel, J. Kwon, M. Ostland, and J. Rice(2002), "A new methodology for evaluating incident detection algorithms", Transportation Research Part C: Emerging Technologies, Vol. 10, No. 3, pp.189-204. https://doi.org/10.1016/S0968-090X(02)00007-4
  25. PTV. (2009)a, "VISSIM 5.10 User Manual", Planung Transport Verkehr (PTV) AG, Karlsruhe, Germany.
  26. PTV. (2009)b, "VISSIM 5.10 COM Interface Manual", Planung Transport Verkehr (PTV) AG, Karlsruhe, Germany.
  27. Rardin, R. (1997), "Optimization in Operations Research", Prentice Hall, Upper Saddle River, New Jersey.
  28. Srinivasan, K. K. and P. P. Jovanis (1996), "Determination of number of probe vehicles required for reliable travel time measurement in urban network", Transportation Research Record: Journal of Transportation Research Board, No. 1537, Transportation Research Board of the National Academies, Washington, D.C., pp.15-22.
  29. Wischhof, L., A. Ebner, and H. Rohling (2005), "Information dissemination in self-organizing inter-vehicle networks", IEEE Transactions on Intelligent Transportation Systems, Vol. 6, No. 1, IEEE, pp.90-101. https://doi.org/10.1109/TITS.2004.842407
  30. Wu, H., R. Fujimoto, and G. Riley (2004), "Analytical models for information propagation in vehicle-to-vehicle networks", Proceedings of the 60th Vehicular Technology Conference, IEEE, pp.4548-4552.
  31. Wu, H., J. Lee, M. Hunter, R. Fujimoto, R. L. Guensler, and J. Ko (2005), "Efficiency of simulated vehicle-to-vehicle message propagation in Atlanta, Georgia, I-75 Corridor", Transportation Research Record, Vol. 1910, pp.82-89. https://doi.org/10.3141/1910-10
  32. Xu, H. and M. Barth (2004), "A transmission-interval and power-level modulation methodology for optimizing inter-vehicle communications", Proceedings of 1st International Conference on Mobile Computing and Networking, Philadelphia, PA, pp.97-98.
  33. Xu, H. and M. Barth (2006), "Travel time estimation techniques for traffic information systems based on inter-vehicle communications", Transportation Research Record: Journal of Transportation Research Board, No. 1944, Transportation Research Board of the National Academies, Washington, D.C., pp.72-81.
  34. Yang, X. (2003), "Assessment of A Self- Organizing Distributed Traffic Information System: Modeling and Simulation", Ph.D. Dissertation in Civil Engineering Department, University of California at Irvine.
  35. Ziliaskopoulos, A. K. and J. Zhang (2002), "A zero public infrastructure vehicle based traffic information system", Proceedings of 81st Annual Meeting of the Transportation Research Board, Washington, D.C.