초록
최근 페이스북, 트위터 등 다양한 소셜 네트워크 서비스(SNS)가 등장하였으며, 많은 사용자들이 SNS를 이용하고 있다. 이러한 사용자의 증가로 인해 많은 조직들은 SNS에 관심을 가지게 되었다. 조직에서 SNS의 사용은 다양한 이점을 지니고 있다. SNS를 통해 조직들은 사용자들의 행위에 신속하고 지속적으로 반응할 수 있고, 다양한 특성을 지닌 사용자에게 쉽게 접근할 수 있으며, 타 매체에 비하여 사용자 특성이 반영된 차별화된 전략을 세울 수 있다. 또한 기업들은 SNS를 통해 상대적으로 저렴한 비용으로 활용이 가능하며, 사용자들과 양방향 소통이 가능하여 친근성과 신뢰성이 있는 관계 구축이 용이하다. 그러나 네트워크의 특성에 따라 SNS의 정보전달의 효과가 다르게 나타남에도 불구하고 조직들은 네트워크의 특성을 고려하지 않고 획일화된 방법으로 SNS를 활용하여 사용자들과 커뮤니케이션하고 있다. 따라서 본 연구에서는 네트워크에 따른 SNS의 정보전달의 효과 차이를 분석하였다. 즉 오프라인에서의 커뮤니케이션 기반으로 형성된 네트워크와 무작위로 형성된 네트워크를 생성하여, 각각의 네트워크들의 특징 차이를 분석하기 위하여 소셜 네트워크 분석을 하였다. 또한, 각각의 네트워크에서 SNS를 이용한 정보 전달 효과의 차이가 있는지 실증적으로 검증하였다. 실증 분석후 네트워크의 특성에 따라 네트워크 내 사용자들은 SNS를 받아들이는 반응이 달랐다. 따라서 조직이 효과적인 마케팅 수단으로 소셜 네트워크를 활용하기 위해서는 그 목적에 따라 네트워크의 특성을 고려하여 적절한 네트워크 형태를 구성해야 함을 도출하였다.
In recent years, Social Network Service, which is defined as a web-based service that allows an individual to construct a public or a semi-public profile within a bounded system, articulates a list of other users with whom they share connections, and traverses their list of connections. For example, Facebook and Twitter are the representative sites of Social Network Service, and these sites are the big issue in the world. A lot of people use Social Network Services to connect and maintain social relationship. Recently the users of Social Network Services have increased dramatically. Accordingly, many organizations become interested in Social Network Services as means of marketing, media, communication with their customers, and so on, because social network services can offer a variety of benefits to organizations such as companies and associations. In other words, organizations can use Social Network Services to respond rapidly to various user's behaviors because Social Network Services can make it possible to communicate between the users more easily and faster. And marketing cost of the Social Network Service is lower than that of existing tools such as broadcasts, news papers, and direct mails. In addition, Social network Services are growing in market place. So, the organizations such as companies and associations can acquire potential customers for the future. However, organizations uniformly communicate with users through Social Network Service without consideration of the characteristics of the networks although networks have different effects on information deliveries. For example, members' cohesion in an offline communication is higher than that in an online communication because the members of the offline communication are very close. that is, the network of the offline communication has a strong tie. Accordingly, information delivery is fast in the network of the offline communication. In this study, we compose two networks which have different characteristic of communication in Twitter. First network is constructed with data based on an offline communication such as friend, family, senior and junior in school. Second network is constructed with randomly selected data from users who want to associate with friends in online. Each network size is 250 people who divide with three groups. The first group is an ego which means a person in the center of the network. The second group is the ego's followers. The last group is composed of the ego's follower's followers. We compare the networks through social network analysis and follower's reaction analysis. We investigate density and centrality to analyze the characteristic of each network. And we analyze the follower's reactions such as replies and retweets to find differences of information delivery in each network. Our experiment results indicate that density and centrality of the offline communicationbased network are higher than those of the online-based network. Also the number of replies are larger than that of retweets in the offline communication-based network. On the other hand, the number of retweets are larger than that of replies in the online based network. We identified that the effect of information delivery in the offline communication-based network was different from those in the online communication-based network through experiments. So, you configure the appropriate network types considering the characteristics of the network if you want to use social network as an effective marketing tool.