DOI QR코드

DOI QR Code

Analysis on Boundary Condition for Standing Balance of Four-Legged Robots

4족 로봇의 정지 밸런스를 위한 경계 조건 분석

  • Kim, Byoung-Ho (Biomimetics & Intelligent Robotics Lab., Dept. of Mechatronics Eng., Kyungsung Univ.)
  • 김병호 (경성대학교 메카트로닉스공학과 생체모방및지능로봇 연구실)
  • Received : 2011.11.19
  • Accepted : 2011.12.05
  • Published : 2011.12.25

Abstract

This paper analyzes the standing balance of four-legged robots which are useful for delivering objects or investigating of information. For this, we specify an effective model of general four-legged robots and propose a boundary condition based on the standing stability of the four-legged walking. To verify such a standing balance, we consider some exemplary free motions at the standing mode of the robot and discuss on the robot's balance margin. The analysis specified in this paper will be applicable for effective balancing control of various quadruped robotic walking.

본 논문에서는 물체의이동이나 정보 탐색을위하여 유용하게 사용될 수 있는 4족 로봇의 정지 밸런스를 분석하고자 한다. 이 목적을위하여, 일반적인 4족 로봇의유용한 모델을 제시하고, 정지 안정성을 고려한 경계 조건을 제안한다. 착지된 상태에서 4족 로봇의 정지 밸런스를 분석하기 위하여 다양한 자유 운동을 고려하며, 시뮬레이션을 통하여 밸런스 여유를 고찰한다. 이러한 분석은 4족 로봇 보행의 효과적인 밸런싱 제어를 위하여 유용하게 활용될 수 있을것이다.

Keywords

References

  1. R. Siegwart and I. R. Nourbakhsh, Introduction to autonomous mobile robots, The MIT Press, 2004.
  2. T. Morita, K. Shibuya, and S. Sugano, "Design and control of mobile maniulation system for human symbiotic humanoid: Hadaly-2," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1315-1320, 1998.
  3. M. Hans, B. Graf, and R. D. Schraft, "Robotic home assistant care-o-bot: past-present-future," Proc. of 11th Int. workshop on robot and human interactive communication, pp. 380-385, 2002.
  4. H. Surmann, A. Nuchter, and J. Hertzberg, "An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments," Robotics and Autonomous Systems, Vol. 45, pp. 181-198, 2003. https://doi.org/10.1016/j.robot.2003.09.004
  5. Y. Hada, H. Gakuhari, K. Takase, and E. I. Hemeldan, "Delivery service robot using distributed acquisition, actuators and inteliigence," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2997- 3002, 2004.
  6. P. Harmo, T. Taipalus, J. Knuuttila, J. Vallet, and A. Halme, "Needs and solutions-home automation and service robots for the elderly and disabled," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3201-3206, 2005.
  7. J. S. Mehling, P. Strawser, L. Bridgwater, W. K. Verdeyen, and R. Roverkamp, "Centaur: NASA's mobile humanoid designed for filed work," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2928- 2933, 2007.
  8. K. Arikawa and S. Hirose, "Development of quadruped walking robot TITAN-VIII," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 208-214, 1996.
  9. G. S. Hornby, S. Takamura, T. Yamamoto, and M. Fujita, "Autonomous evolution of dynamic gaits with two quadruped robots," IEEE Transactions on Robotics, vol. 21, no. 3, pp. 402-410, 2005. https://doi.org/10.1109/TRO.2004.839222
  10. J. Estremera and P. G. deSantos, "Generating continuous free crab gaits for quadruped robots on irregular terrain," IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1067-1076, 2005. https://doi.org/10.1109/TRO.2005.852256
  11. http://www.bostondynamics.com/, Boston Dynamics co., USA.
  12. P.-C. Lin, H. Komsuoglu, and D. E. Koditschek, "A leg configuration measurement system for full-body pose estimates in hexapod robot," IEEE Transactions on Robotics, vol. 21, no. 3, pp. 411-422, 2005. https://doi.org/10.1109/TRO.2004.840898
  13. S. Nakajima, E. Nakano, and T. Takahashi, "Motion control technique for practical use of a leg-wheel robot on unknown outdoor rough terrains," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1353-1358, 2004.
  14. M. Takahashi, K. Yoneda, and S. Hirose, "Rough terrain locomotion of a leg-wheel hybrid quadruped robot," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1090-1095, 2006.
  15. B.-H Kim, "Analysis on effective walking pattern for multi-legged robots," Jour. of Korean Institute of Intelligent Systems, vol. 19, no. 5, pp. 622-628, 2009. https://doi.org/10.5391/JKIIS.2009.19.5.622
  16. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K, Fujimura, "The intelligent ASIMO: system overview and integration," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2478-2483, 2002.
  17. Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H.-O. Lim, and A, Takanishi, "Development of a new humanoid robot, WABIAN-2," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2478-2483, 2002.
  18. I. Mizuuchi, T. Yoshikai, Y. Sodeyama, Y. Nakanishi, A. Miyadera, T. Yamamoto, T. Niemela, M. Hayashi, J. Urata, Y. Namiki, T. Nishino, and M. Inaba, "Development of musculoskeletal humanoid Kotaro," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 82-87, 2006.
  19. B.-H Kim, "Falling-based optimal foot trajectory planning for 3D bipedal robotic walking," Proc. of Int. Conf. on Advanced Robotics, pp. 82-87, 2011.

Cited by

  1. Analysis of Balance of Quadrupedal Robotic Walk using Measure of Balance Margin vol.13, pp.2, 2013, https://doi.org/10.5391/IJFIS.2013.13.2.100
  2. An Efficient Gait Generation Method for Quadruped Robot with Waist Joints vol.23, pp.5, 2013, https://doi.org/10.5391/JKIIS.2013.23.5.466