DOI QR코드

DOI QR Code

Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay

광양만에서 TBTCl (Tributyltin Chloride) 내성세균의 분리 및 분해활성

  • Jeong, Seong-Yun (Department of Biomedical Science, Catholic University of Daegu) ;
  • Son, Hong-Joo (College of Natural Resources and Life Science, Pusan National University) ;
  • Jeoung, Nam-Ho (Catholic University of Daegu CU Leaders’ College)
  • 정성윤 (대구가톨릭대학교 의생명과학과) ;
  • 손홍주 (부산대학교 생명자원과학대학) ;
  • 정남호 (대구가톨릭대학교 CU 인재학부)
  • Received : 2011.12.09
  • Accepted : 2011.12.26
  • Published : 2011.12.31

Abstract

BACKGROUND: Tributyltin chloride is among the most toxic compounds known for aquatic ecosystems. Microorganisms are responsible for removal of TBTCl. Nevertheless, only a limited number of marine bacteria were investigated for biodegradation of TBTCl in Korea. METHODS AND RESULTS: The number of TBTCl resistant bacteria ranged from $2.5{\times}10^3$ to $3.8{\times}10^3$ cfu/mL in the seawater, and ranged from $3.2{\times}10^5$ to $9.1{\times}10^5$ cfu/g in the surface sediment, respectively. The morphological, physiological, and biochemical characteristics of TBTCl resistant bacteria were investigated by API 20NE and other tests. The most abundant species of TBTCl resistant bacteria were Vibrio spp. (19.2%), Bacillus spp. (16.2%), Aeromonas spp. (15.2%), and Pseudomonas spp. (13.1%), etc. Eleven TBTCl resistant isolates also had a resistance to heavy metals (Cd, Cu, Hg, and Zn). Among them, isolate T7 showing the strong TBTCl-resistance was selected. This isolate was identified as the genus Pantoea by 16S rRNA gene sequencing and designated as Pantoea sp. T7. In addition, this bacterium was cultivated up to the growth of 50.7% after 60 hrs at TBTCl concentration of $500{\mu}M$. TBTCl-degrading activity of Pantoea sp. T7 was measured by GC-FPD analysis. As a result of biological TBTCl-degradation at TBTCl concentration of $100{\mu}M$, TBTCl-removal efficiency of Pantoeasp. T7 was 62.7% after 40 hrs. CONCLUSION(S): These results suggest that Pantoea sp. T7 is potentially useful for the bioremediation of TBT contamination.

본 연구에서 우리는 광양만의 해수와 표층 퇴적물에서 TBTCl 내성세균의 개체수를 조사하였다. 광양만에서 TBTCl 내성세균의 개체수는 해수에서 $2.5{\times}10^3-3.8{\times}10^3$ cfu/mL 범위였으며, 표층 퇴적물에서 TBTCl 내성세균의 개체수는 $3.2{\times}10^5-9.1{\times}10^5$ cfu/g 범위였다. 광양만에서 TBTCl 내성세균의 종조성은 Vibrio spp. (19.2%)가 가장 높은 우점종으로 나타났고, Bacillus spp. (16.2%), Aeromonas spp. (15.2%), Pseudomonas spp. (13.1%), Klebsiella spp. (11.1%), Alteromonas spp. (9.1%), Pantoea spp. (6.1%), Proteus spp. (3.0%), Listeria spp. (2.0%), unidentified (5.0%)의 순으로 우점하였다. 또한 11개의 대표적인 TBTCl 내성균주는 여러 중금속들(Cd, Cu, Hg 및 Zn)에도 내성을 나타내었다. 이들 중에서 가장 강한 TBTCl 내성을 보이는 T7 균주를 선별하여, API 20NE등을 이용하여 본 균주의 형태학적, 생리학적 및 생화학적 특성들을 조사하였다. T7 균주는 16S rRNA gene 염기서열 분석에 의해 Pantoea 속으로 동정되어 Pantoea sp. T7으로 명명되었다. 또한 본 균주는 $500{\mu}M$의 TBTCl 농도에서도 60시간 배양 후에 정상 균주 성장의 50.7%까지 증식하였다. Pantoea sp. T7의 생물학적 TBTCl 분해활성은 GC-FPD 분석에 의해 측정되었는데, $100{\mu}M$의 TBTCl 농도에서 배양 40시간 후에 TBTCl 제거 효율은 62.7%로 나타났다.

Keywords

References

  1. Anderson, R.S., Brubacher, L.L., Calvo, L.M., Burreson, E.M., Unger, M.A., 1997. Effects of in vibrio exposure to tributyltin on generation of oxygen metabolites by oyster hemocytes,Environ. Res . 74(1), 84-90. https://doi.org/10.1006/enrs.1997.3751
  2. Barug, D, 1981. Microbial degradation of bis (tributyltin) oxide,Chemosphere . 10(10), 1145-1154. https://doi.org/10.1016/0045-6535(81)90185-5
  3. Bernat, P.,Dlugonski, J., 2006. Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamellaelegans, Chemosphere. 62, 3-8. https://doi.org/10.1016/j.chemosphere.2005.04.045
  4. Buck, J.D., Cleverdon, R.C., 1960. The spread plate as a method for enumeration of marine bacteria, Limnol.Oceanogr. 5, 75-80.
  5. Canamas, T.P., Vinas, I.,Abadias, M., Usall, J., Torres, R., Teixido, N., 2009. Acid tolerance response induced in the biocontrol agent Pantoea agglomerans CPA-2 and effect on its survival ability in acidic environments,Microbiol. Res. 164, 438-450. https://doi.org/10.1016/j.micres.2007.02.007
  6. Clark, E.A., Sterritt, R.M., Lester, J.N., 1988. The fate of tributyltin in the aquatic environment, Environ. Sci. Technol. 22(6), 600-604. https://doi.org/10.1021/es00171a001
  7. Cruz, A., Caetano, T., Suzuki, S., Mendo, S., 2007. Aeromonasveronii , a tributyltin (TBT)-degrading bacterium isolated from an estuarine environment, Ria de Aveiro in Portugal,Mar. Environ. Res. 64, 639-650. https://doi.org/10.1016/j.marenvres.2007.06.006
  8. Dunbar, J., Ticknor, L.O., Kuske, C.R., 2000. Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis, Appl. Environ. Microbiol.66, 2943-2950. https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  9. Fukagawa, T., Suzuki, S., Fukunaga, K., Suzuki, T., Takama, K., 1992. Isolation and characterization of tributyltin chloride-resistant marine Vibrio,FEMS Microbial.lett. 93, 83-86. https://doi.org/10.1111/j.1574-6968.1992.tb05044.x
  10. Fukagawa, T., Suzuki, S., 1994. Cloning of gene responsible for tributyltin chloride (TBTCl) resistance in TBTClresistant marine bacterium, Alteromonas sp. M-1, Bioch.Biophysi. Res. Com. 194(2), 733-740.
  11. Gerhardt, P., Murray, R.G., Costilow, E.R.N., Nester, E.W., Wood, W.A., Krieg, N.R., Phillips, G.B., 1981. Manual of method for general bacteriology , pp. 135-154, 1st ed. American Society for Microbiology, Washington D.C., USA.
  12. Han, G., Cooney, J.J., 1995. Effects of butyltins and inorganic tin on chemotaxis of aquatic bacteria,J. Ind. Microbial. 14, 293-299. https://doi.org/10.1007/BF01569942
  13. Harino, H., O'Hara, S.C.M., Burt, G.R., Pope, N.D., Chesman, B.S., Langston, W.J., 2002. Butyltin and phenyltin compounds in eels (Anguilla anguilla ),J. Marine Biol. Assoc. UK. 82(5), 893-901. https://doi.org/10.1017/S0025315402006318
  14. Hashimoto, S., Watanabe, M, Noda, Y., Hayashi, T., Kurita, Y.,Takasu, Y., Otsuki, A., 1998. Concentration and distribution of butyltin compounds in a heavy tanker route in the Strait of Malacca and in Tokyo bay,Marine Environ. Res. 45(2), 169-177. https://doi.org/10.1016/S0141-1136(97)00031-7
  15. Kam, S.K., Kim, H.J., Lee, M,G., 2011. Distribution characteristics of organotin compounds in sediments inside Jeju harbor of Jeju Island,J. Environ. Sci. 20, 385-394. https://doi.org/10.5322/JES.2011.20.3.385
  16. Kim, D.C., Kang, H.J., 1991.Suspended sediment budget in Gwangyang Bay through the Yeosu Sound,J. Korean Fish. Soc. 24(1), 31-38.
  17. Kim, G.Y., Park, M.O., 2001. Evaluation of butyltin compounds and its distribution among seawater, sediment and biota from the Kwangyang Bay,J. Korean Fish. Soc. 34(4), 291-298.
  18. Lee, J.R., 2000, Change of regional economic structure and industrial development of Kwangyang Bay area: 1987-1996,Korean Plan. Assoc. 35(2), 175-189.
  19. MacFaddin, J.F., 1980. Biochemical tests for identification of medical bacteria , pp. 36-308, 2nd ed. Williams and Wilkins Co., Baltimore, USA.
  20. Mailhot, G., Astruc, M., Bolte, M., 1999. Degradation of tributylin chloride in water photoinduced by iron (III),Appl. Organometal. Chem. 13, 53-61. https://doi.org/10.1002/(SICI)1099-0739(199901)13:1<53::AID-AOC814>3.0.CO;2-5
  21. Marszalek, D.S., Gerchakov, S.M.,Udey, L.R., 1979. Influence of substrate composition on marine microfouling,Appl. Environ. Microbiol. 38, 987-995.
  22. McDonald, L., Trevors, J.T., 1988. Review of tin resistance, accumulation and transformations by microorganisms,Water Air Soil Pollut. 40. 215-221.
  23. Pain, A., Cooney, J.J., 1998. Characterization of organotin-resistant bacteria from Boston harbor sediments,Arch. Environ. Contam.Toxicol. 35(3), 412-416. https://doi.org/10.1007/s002449900396
  24. Park, Y.A., Lee, C.B., Choi, J.H., 1984. Sedimentary Environments of the Gwangyang Bay, Southern Coast of Korea,Korean Soc. Oceano. 19(1), 82-88.
  25. Sambrook, J., Fritsch, E.F., Maniatis, T., 1989.Molecular cloning, a laboratory manual , pp. 25-28, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, N.Y., USA.
  26. Shim, W.J., Oh, J.R., Kang, S.H., Shim, J.H., Lee, S.H., 2000.Tributyltin and triphenyltin residues in Pacific oyster (Crassostreagigas ) and rock shell (Thais clavigera ) from the Chinhae Bay System, Korea,J. Korean Soc. Oceanogr. 33(3), 90-99.
  27. Smits, T.H.M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C.A., Stockwell, V.O., Frey, J.E., Duffy, B., 2010.The genome sequence of the biocontrol agent Pantoea vagans strain C9-1,J. Bacteriol. 192, 6486-6487. https://doi.org/10.1128/JB.01122-10
  28. Taga, N., 1968. Some ecological aspects of marine bacteria in the KuroShio current,Bull. Misaki. Mar. Biol. Inst. Kyoto Univ. 12, 65-76.
  29. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  30. Uchida, M., 1993. Inhibitory activity of organotin compounds against colony formation of estuarine bacteria,Nippon suisangakkaish. 59(12), 2037-2941.
  31. Uchida, M., 1994.Tolerance of marine bacteria for organotin compounds (OTCs) in areas with or without OTC contamination,Fisher. Sci. 60(3), 267-270. https://doi.org/10.2331/fishsci.60.267

Cited by

  1. Anti-biofouling properties of silver nano-particle coated artificial light-weight aggregates vol.25, pp.5, 2015, https://doi.org/10.6111/JKCGCT.2015.25.5.212