Effect of Greater Celandine (Chelidonium majus L.) on Rat Hepatic Stellate Cells with Liver Fibrosis

백굴채(白屈菜)가 간섬유화 과정 중 간성상세포에 미치는 영향

  • Lee, Hong-Il (Dept. of Internal Medicine, College of Oriental Medicine, Kyung-Hee University) ;
  • Kim, Young-Chul (Dept. of Internal Medicine, College of Oriental Medicine, Kyung-Hee University)
  • 이홍일 (경희대학교 한의과대학 간계내과학교실) ;
  • 김영철 (경희대학교 한의과대학 간계내과학교실)
  • Published : 2011.12.30

Abstract

Objectives : This study was performed to investigate the anti-fibrogenic effect of greater celandine on cultured rat hepatic stellate cells. Materials and Methods : Hepatic stellate cells (HSC-T6) were treated with various concentrations of greater celandine extract for 24, 48, and 72 hours. The extraction was done with distilled water. After the treatment, cell viability, proliferation, mRNA of the ${\alpha}SMA$, TIMP-1, TIMP-2, collagen I ${\alpha}$ 1, MMP-2, IL-6, TGF-${\beta}1$, PDGFr-${\beta}1$, Bcl-2, Bax, Bcl-xl, caspase-3, caspase-9 and the activities of SOD and catalase were measured by using MTT assay, BrdU assay, real-time PCR, superoxide dismutase assay and catalase assay. Results : The viability, proliferation, mRNA expression and synthesis of collagen of the hepatic stellate cells were inhibited as the concentration increased, which indicates the herb has an inhibitory effect on fibrogenesis of the liver by regulating the fibrosis associated genes in transcription. Conclusions : These results suggest that greater celandine would be beneficial in the treatment of fibrotic patients as well as for patients with chronic hepatitis.

Keywords

References

  1. Friedman SL. Liver fibrosis-from bench to bedside. J Hepatol 2003;38:S38-S53.
  2. Friedman SL. Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004;1(2):98-105. https://doi.org/10.1038/ncpgasthep0055
  3. Friedman SL. Hepatic Fibrosis-Overview. J Toxicology 2008;254:120-9. https://doi.org/10.1016/j.tox.2008.06.013
  4. Friedman SL. Mechanisms of Hepatic Fibrogenesis. Gastroenterology 2008;134(6):1655-99. https://doi.org/10.1053/j.gastro.2008.03.003
  5. Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, et al. Flora Europea(Volume I). Cambridge University Press; 1964, p. 247-51.
  6. Colombo ML, Bosisio E. Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol Res 1996;33(2):127-34. https://doi.org/10.1006/phrs.1996.0019
  7. Wei ZQ, Qu XQ, Zhong Y, Ji YB. Celandin chemical constituents and pharmacological research progress. Chin Tradit Herb Drugs 2009;40:38-40.
  8. Gilca M, Gaman L, Panait E, Stoian I, Atanasiu V. Chlidonium majus-an Integrative Review; Traditional Knowledge versus Modern Findings. Forsch Komplementmed 2010;17:241-8. https://doi.org/10.1159/000321397
  9. 暨王烈. 백굴채와 복합방이 소아과 임상에서의 응용을 논하다. 전국 제26계 중의소아과 학술회 暨王烈교수 학술사상 심포지엄 논문집 2009;30-6.
  10. Moro PA, Cassetti F, Giugliano G, Falce MT, Mazzanti G, Menniti-Ippolito F, et al. Hepatitis from Greater celandine(Chelidonium majus L.): Review of literature and report of a new case. J Ethnopharmacol 2009;124:328-32. https://doi.org/10.1016/j.jep.2009.04.036
  11. 식약청. 대한약전외 한약규격집. 서울: 1985.
  12. 통계청 사회통계국 인구동향과. 2009년 사망원 인통계 결과 [internet]. 통계청;2010. [2010.10.25 검색]. Available from: http://kostat.go.kr/portal/korea/kor_nw/2/6/2/index.board?bmode=read&aSeq=179505.
  13. Nieto N, Friedman SL, Greenwel P, Cederbaum AI. CYP2EI-mediated oxidative stress induced collagen type1 expression in rat hepatic stellate cells. Hepatology 1999;30:987-96. https://doi.org/10.1002/hep.510300433
  14. Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. J Hepatology 1998;29:836-47. https://doi.org/10.1016/S0168-8278(98)80269-9
  15. Gressner AM. Cytokines and cellular cros stalk involved in the activation of fat storing cells. J Hepatol 1995;22:28-36. https://doi.org/10.1016/0270-9139(95)94092-8
  16. Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MD, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution with matrix crosslinking. Gastroenterology 2004;126(7):1795-808. https://doi.org/10.1053/j.gastro.2004.03.009
  17. 장중경. 금궤요략. 서울: 행림서원; 1984, p. 32-4.
  18. 전국 간계내과학 교수 일동. 간계내과학. 서울: 동양의학연구원; 2001, p. 323-50.
  19. 우홍정. 만성 B형 간염에 대한 茵蔯淸肝湯의 효과. 제2회 한중학술대회(간장병)논문집. 대한한의사협회; 1995, p. 18-53.
  20. 이장훈. 三七生肝湯의 效能에 關한 實驗的 研究. 慶熙韓醫大論文集 1994;17(2):17-39.
  21. 박상백, 김영철, 이장훈, 우홍정. 茵蔯淸肝湯이 DMN 유발 간섬유화 단백질 발현에 미치는 영향. 대한한방내과학회지 2008;29(1):200-18.
  22. 김지권, 김영철, 이장훈, 우홍정. 茵蔯淸肝湯이 kupper cell의 inflammatory cytokine 발현에 미치는 영향. 대한한방내과학회지 2004;25(1):46-58.
  23. 이지현, 이장훈, 김영철, 우홍정. 淸肝解酒湯이 TGF-$\beta$1 유도성 간섬유화에 미치는 영향. 대한한방내과학회지 2005;26(1):93-106.
  24. 강병기, 홍석의, 六鬱湯 및 散鬱湯이 DMN및 담도결찰로 유발된 간경변증에 미치는 영향. 제2회 한중학술대회(간장병)논문집. 대한한의사협회; 1995, p. 91-122.
  25. 신상만, 김영철, 이장훈, 우홍정. 茵蔯이 TGF-$\beta$1 유도성 간섬유화에 미치는 영향. 대한한의학회지. 2001;22(3):141-55.
  26. 김영철, 이장훈, 우홍정. 茵蔯淸肝湯이 흰쥐의 간조직에서 비실질세포의 procollagen 합성억제에 미치는 효과에 관한 연구. 대한한방내과학회지 2003;24(4):817-25.
  27. 김성아, 우홍정, 김영철, 이장훈. 茵蔯이 간성상세포의 섬유화 억제에 미치는 영향. 대한한방내과학회지 2008;29(1):177-88.
  28. 최은경, 이장훈, 김영철, 우홍정. 丹蔘이 간성상세포의 섬유화 억제에 미치는 영향. 대한한방내과학회지 2008;29(2):299-310.
  29. 江蘇新醫學院編. 中藥大辭典. 上海科學技術出版社; 1978, p. 726-7.
  30. 한종현, 신민교, 박호식. 백굴채(白屈菜)의 약리 작용에 관한 연구. 대한한의학회지 1985;6(2):128-33.
  31. Nawrot R, Wolun-Cholewa M, Gozdzicka-jozefiak A. Nucleases isolated from chelidonium majus L. milky sap can induce apoptosis in human cervical carcinoma HeLa cells but not in Chinese Hamster Oveary CHO cells. Folia Histochem Cytobiol 2008;46(1):79-83. https://doi.org/10.2478/v10042-008-0011-x
  32. Mosmann T. Rapid colorimetric assay of cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  33. Lehner B, Sandner B, Marschalinger J, Lehner C, Furtner T, Couillard-Despres S, , et al. The dark side of BrdU in neural stem cell biology; Detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res 2011;345(3) :313-28. https://doi.org/10.1007/s00441-011-1213-7
  34. Konishi T, Takeyasu A, Natsume T, Furusawa Y, Hieda K. Visualization of Heavy Ion Tracks by Labeling 3'-OH Termini of Induced DNA Strand Breaks. J Radiat Res 2011;52(4) :433-40. https://doi.org/10.1269/jrr.10097
  35. Hanahan D, Weinberg RA. The Hallmarks of Cancer. Cell 2000;100:57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  36. Malstrom B, Andreasson L, Reinhammer B. In: Boyer P., editor. The Enzymes, XIIB. 3rd edition. New York: Academic Press; 1975, p. 533.
  37. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci 2004;61(2):192-208. https://doi.org/10.1007/s00018-003-3206-5
  38. Jia YG, Tong Y, Xiang GS, Ni YZ, Fu SL, Dan L, et al. Ischemic postconditioning attenuates liver warm ischemia-reperfusion injury through Akt-eNOS-NO-HIF pathway. J Biomed Sci 2011;18:79. https://doi.org/10.1186/1423-0127-18-79
  39. Kumar S, Gupta S. Thymosin Beta 4 prevents oxidative stress by targeting antioxidant and anti-apoptotic genes in cardiac fibroblasts. PLoS One 2011;6(10):e26912. https://doi.org/10.1371/journal.pone.0026912
  40. Liu XQ, Li KF, Du J, Li J, Li R. Growth rate, catalase and superoxide dismutase activites in rock carp(Procypris rabaudi Tchang) exposed to supersaturated total dissolved gas. J Zhejiang Univ Sci B 2011;12(11):909-14. https://doi.org/10.1631/jzus.B1100071