DOI QR코드

DOI QR Code

암석 내 공극구조의 평가를 위한 전기임피던스의 적용

Application of the Electrical Impedance of Rocks in Characterizing Pore Geometry

  • 추민경 (충남대학교 지질환경과학과) ;
  • 송인선 (한국지질자원연구원 지구환경연구본부) ;
  • 이희권 (한국지질자원연구원 지구환경연구본부) ;
  • 김태희 (한국지질자원연구원 지구환경연구본부) ;
  • 장찬동 (충남대학교 지질환경과학과)
  • Choo, Min-Kyoung (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Song, In-Sun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hi-Kweon (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Tae-Hee (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Chan-Dong (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • 투고 : 2011.10.13
  • 심사 : 2011.12.02
  • 발행 : 2011.12.30

초록

지각의 수리역학적 거동은 유효공극의 크기 및 모양 등의 영향을 많이 받는다. 본 연구에서는 지하 유체의 이동 및 저장소가 되는 암석의 공극 특성을 전기임피던스를 이용하여 규명하였다. 공극의 구조가 서로 다른 3종의 화강암(황등, 포천, 양산)과 2종의 사암(보령, Berea)의 암석 시편(지름 : 38-50 mm, 길이 70-100 mm)을 전기전도도가 다론 전해질로 순차적으로 포화시킨 다음 시편의 전기임피던스를 측정하였다. 실험 결과 공극수의 염도가 증가할수록 전기비저항은 감소하고, 전기용량은 증가하는 뚜렷한 경향을 보였다. 또한 같은 염도의 공극수 조건 하에서 암석의 공극률이 증가할수록 전기비저항과 formation factor는 감소하지만, 전기용량 값은 증가하는 경향을 보였다. 이방성을 갖는 Berea 사암에서는 층리와 수직 방향의 임피던스를 측정했을 때 저항이 가장 크게 나왔으며, tortuosity와 cementation factor 값도 가장 높게 산정 되었다. 이는 층리의 수직 방향으로 공극의 연결성이 떨어진다는 것을 의미한다. 따라서 본 연구의 실험 결과는 암석의 전기적 특성이 공극률 뿐 아니라 공극의 구조와도 관련이 있음을 보여준다.

The hydro-mechanical behavior of the Earth's crust is strongly dependent on the fractional volume and geometrical structure of effective pore spaces. This study aims to understand the characteristics of pores using electrical impedance. We measured the electric impedance of core samples (diameter, 38-50 mm; length, 70-100 mm) of three types of granite (Hwangdeung, Pocheon, and Yangsan) and two types of sandstone (Boryung and Berea) with different porosities and pore structures, after saturation with saline water of varying salinities. The results show that resistance decreases but capacitance increases with increasing salinity of the pore fluid. For a given salinity, the resistivity and formation factor are reduced with increasing porosity of the rocks, and the capacitance increases. Berea sandstone shows anisotropy in resistance, tortuosity, and cementation factor, with these factors being highest normal to bedding planes. This result indicates that the connectivity of pores is weakest normal to bedding. In conclusion, the electrical characteristics of the tested samples are related not only to their porosity but also to the pore geometry.

키워드

과제정보

연구 과제번호 : 이산화탄소 지중저장을 위한 지질학적 기본설계 기술개발

연구 과제 주관 기관 : 한국지질자원연구원

참고문헌

  1. 김훈상, 배승훈, 송종택, 2002, 임피던스 측정에 의한 혼합재를 포함한 포틀랜드 시멘트의 수화, 한국세라믹학회지, 39(6), 540-549.
  2. 민경덕, 서정희, 권병두, 1987, 응용지구물리학, 우정문화사, 772p.
  3. 박덕원, 홍세선, 김철주, 이춘오, 이병태, 윤현수, 2004, 흑색사암(오석)과 흑색셰일(청석) 석재자원의 지질과 산출유형, 자원환경지질, 37(6), 585-601.
  4. 박수문, 1999, Electrochemical Impedance Spectroscopy, 한국고분자학회, 10, 817-829.
  5. 송종택, 김훈상, 황인수, 2002, 임피던스 측정법을 이용한 포틀랜드 시멘트-고로 슬래그계의 초기수화, 한국세라믹학회지, 39(1), 99-107.
  6. 윤용균, 2004, 보령사암과 여산대리암의 물리적특성에 대한 온도의 영향, 대한화약발파공학회지, 22(4), 17-22.
  7. 윤중필, 하종구, 오양균, 2009, 양산 화강암의 일축/삼축 압축 시험을 통한 물성의 상관성 분석, 충남대학교 지질환경과학대학 2009학년도 학사학위논문, 23p.
  8. 이범한, 이성근, 2010, 지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구, 한국광물학회지, 23(4), 367-375.
  9. 이상규, 이태종, 2009, 전도성이 다른 공극수로 순차 치환한 시멘트 시험편의 전기비저항, 지구물리와 물리탐사, 12(4), 328-337.
  10. 이주성, 2000, 전기화학, 보성문화사, 402p.
  11. 장보안, 오선환, 2001, 포천화강암내에 발달한 결의 역학적 이방성과 미세균열의 상관성, 지질공학, 11(2), 191-203.
  12. 장보안, 지훈, 장현식, 2010, 황등화강암을 이용한 암석의 손상기준 결정방법 연구, 지질공학, 20(1), 89-100.
  13. Abousrafa, E.M., Somerville, J.M., Hamilton, S.A., Olden, P.W.H., Smart, B.D.G., and Ford, J., 2009, Pore geometrical model for the resistivity of brine saturated rocks, Journal of Petroleum Science and Engineering, 65, 113-122. https://doi.org/10.1016/j.petrol.2008.12.009
  14. Adisoemarta, P.S., Anderson, G.A., Frailey, S.M., and Asquith, G.B., 2000, Historical use of m and a in well log interpretation: Is conventional wisdom backwards?, SPE Pennian Basin Oil and Gas Recovery Conference, Society of Petroleum Engineers, 59699, 7.
  15. Adler, P.M., 1992, Porous Media: Geometry and Transports, Butterworth-Heinemann, Boston, 560p.
  16. Archie, G.E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Bulletin of the American association of petroleum geologists, 34(5), 943-961.
  17. Archie, G.E., 1947, Electrical resistivity: An aid in coreanalysis interpretation, AAPG Bulletin, 31, 350-366.
  18. Beekmans, N.M. and Heyne, L., 1976, Correlation between impedance, microsturcture and composition of calcia-stabilized zirconia, Electrochimica Acta, 21(4), 303-310. https://doi.org/10.1016/0013-4686(76)80024-2
  19. Brown, R.J.S., 1980, Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot's equations for acoustic waves in fluid-filled porous media, Geophysics, 45(8), 1269-1275. https://doi.org/10.1190/1.1441123
  20. Buchwald, A., 2000, Determination of the ion diffusion coefficient in moisture and salt loaded masonry materials by impedance spectroscopy, 3rd Int. PhD Symposium, Vienna, 2, 475-482.
  21. Chang, B.Y. and Park, S.M., 2006, Integrated description of electrode/electrolyte interfaces based on equivalent circuits and its verification using impedance measurements, Analytical Chemistry, 78(4), 1052-1060. https://doi.org/10.1021/ac051641l
  22. David, C., 1993, Geometry of flow paths for fluid transport in rocks, Journal of Geophysical Research, 98(B7), 12267-12278. https://doi.org/10.1029/93JB00522
  23. Franklin, J.A. and Dusseault, M.B., 1991, Rock engineering applications McGraw-Hill, New York, 600p.
  24. Freund, D. and Nover, G., 1995, Hydrostatic pressure tests for the permeablity-formation factor relation on crystalline rocks from the KTB drilling project, Surveys in Geophysics, 16, 47-62. https://doi.org/10.1007/BF00682712
  25. Glover, P.W.J. and Vine, F.J., 1992, Electrical conductivity of carbon-bearing granulite at raised temperatures and pressures, Nature, 360, 723-726. https://doi.org/10.1038/360723a0
  26. Happel, J. and Brenner, H., 1983, Low Reynolds Number Hydrodynamics, Springer, 563p.
  27. Hudec, P., 1998, Rock properties and physical processes of rapid weathering and deterioration, 8th International AEGE Congress, 335-341.
  28. Knight, R. and Abad, A., 1995, Rock/water interaction in dielectric properties: Experiments with hydrophobic sandstones, Geophysics, 60(2), 431-436. https://doi.org/10.1190/1.1443780
  29. Lim, J.S., 2005, Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea, Journal of Petroleum Science and Engineering, 49, 182-192. https://doi.org/10.1016/j.petrol.2005.05.005
  30. Lo, T.W., Coyner, K.B. and Toksoz, M.N., 1986, Experimental determination of elastic anisotropy of Berea sandstone, Chicopee shale, and Chelmsford granite, Geophysics, 51(1), 164-171. https://doi.org/10.1190/1.1442029
  31. Lorne, B., Perrier, F. and Avouac, J.P., 1999, Streaming potential measurements 1. Properties of the electrical double layer from crushed rock samples, Journal of geophysical research, 104(B8), 17857-17877. https://doi.org/10.1029/1999JB900156
  32. Martys, N.S., Torquato, S. and Bentz, D.P., 1994, Universal scaling of fluid permeability for sphere packings, Physical review E, 50(1), 403-408. https://doi.org/10.1103/PhysRevE.50.403
  33. Menendez, B., Zhu, W. and Wong, T.F., 1996, Micromechanics of brittle faulting and cataclastic flow in Berea sandstone, Journal of Structural Geology, 18(1), 1-16. https://doi.org/10.1016/0191-8141(95)00076-P
  34. Neithalath, N., Weiss, J., and Olek, J., 2006, Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance, Cement and Concrete Research, 36, 2074-2085. https://doi.org/10.1016/j.cemconres.2006.09.001
  35. Nover, G., Heikamp, S., and Freund, D., 2000, Electrical impedance spectroscopy used a tool for the detection of fractures in rock samples exposed to either hydrostatic or triaxial pressure conditions, Natural Hazards, 21(2-3), 317-330. https://doi.org/10.1023/A:1008122012610
  36. Odling, N.W.A., Elphick, S.C., Meredith, P., Main, I., and Ngwenya, B.T., 2007, Laboratory measurement of hydrodynamic saline dispersion within a micro-fracture network induced in granite, Earth and Planetary Science Letters, 260, 407-418. https://doi.org/10.1016/j.epsl.2007.05.034
  37. Park, S.M. and Yoo, J.S., 2003, Electrochemical impedance spectroscopy for better electrochemical measurements, American chemical society, 75(21), 455A-461A.
  38. Partzsch, G.M., Schilling, F.R., and Arndt, J., 2000, The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations, Tectonophysics, 317(3), 189-203. https://doi.org/10.1016/S0040-1951(99)00320-0
  39. Salem, H.S. and Chilingarian, G.V., 1999, The cementation factor of Archie's equation for shaly sandstone reservoirs, Journal of Petroleum Science and Engineering, 23, 83-93. https://doi.org/10.1016/S0920-4105(99)00009-1
  40. Scheidegger, A. E., 1974, The Physics of Flow Through Porous Media, 2nd ed., University of Toronto Press, Toronto, 353p.
  41. Schopper, J.R., 1966, A theoretical investigation on the formation factor/permeability/porosity relationship using a network model, Geophysical prospecting, 14(3), 301-341. https://doi.org/10.1111/j.1365-2478.1966.tb01763.x
  42. Schwartz, L.M., Martys, N., Bentz, D.P., Garboczi, E.J., and Torquato, S., 1993, Cross-property relations and permeability estimation in model porous media, Physical Review E, 48(6), 4584-4591. https://doi.org/10.1103/PhysRevE.48.4584
  43. Singh, J., Jha, B.P., and Acharya, U.B., 1972, Some studies in the resistivity of Indian sandstones, Pure & Applied Geophysics, 98(1), 153-162. https://doi.org/10.1007/BF00875590
  44. Verwer, K., Eberli, G.P., and Weger, R.J., 2011, Effect of pore structure on electrical resistivity in carbonates, AAPG BULLETIN, 95(2), 175-190. https://doi.org/10.1306/06301010047
  45. Walsh, J.B. and Brace, W.F., 1984, The effect of pressure on porosity and the transport properties of rock, Journal of geophysical research, 89(B11), 9425-9431. https://doi.org/10.1029/JB089iB11p09425
  46. Winsauer, W.O., Shearin, H.M., Masson, P.H., and Williams, M., 1952, Resistivity of brine-saturated sands in relation to pore geometry, Bull. Am. Assoc. Pet. Geol. 36, 253-277.
  47. Xie, P., Gu, P., Xu, Z., and Beaudoin, J.J., 1993, A rationalized A.C. Impedance Model for Microsturctural Characterization of Hydrating Cement Systems, Cement and Concrete Research, 23, 359-367. https://doi.org/10.1016/0008-8846(93)90101-E

피인용 문헌

  1. Evaluation of Pore Size Distribution of Berea Sandstone using X-ray Computed Tomography vol.24, pp.3, 2014, https://doi.org/10.9720/kseg.2014.3.353
  2. A Study of Locally Changing Pore Characteristics and Hydraulic Anisotropy due to Bedding of Porous Sandstone vol.23, pp.3, 2013, https://doi.org/10.7474/TUS.2013.23.3.228
  3. X-ray CT를 이용한 분무식 방수 멤브레인의 공극 내 물 침투 분석 vol.16, pp.4, 2011, https://doi.org/10.12814/jkgss.2017.16.4.211