DOI QR코드

DOI QR Code

음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission

  • 투고 : 2011.09.14
  • 심사 : 2011.11.09
  • 발행 : 2011.12.30

초록

방사성폐기물처분장 주변 암반의 수많은 불확실성을 이해하기 위해서는 무결암에서 발생하는 균열의 성장과 거동 분석은 필수이다. 이에 본 연구에서는 처분장과 유사한 지질적 구조적 특성을 지닌 한국원자력연구원 내에 위치한 지하처분연구시설에서 채취한 화강암 시료를 이용하여 균열의 성장과 이에 따른 손상도를 AE parameter와 모멘트텐서해석법을 이용하여 분석하였다. 시료의 균열개시 균열결합 균열손상응력은 최대강도의 0.45배, 0.73배, 0.84배인 것으로 나타났다. 모벤트텐서해석법을 이용한 결과 응력 초기에는 인장균열의 발달이 우세하였으나 응력 수준이 증가함에 따라 전단균열이 발달하였다. 또한 시료에 균열손상응력 이상의 응력이 가해지면 파괴면을 중심으로 불안정한 전단균열이 발생하였으며 이는 파괴에 직접적인 역할을 하는 것으로 해석되었다.

The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

키워드

참고문헌

  1. 서용석, 정교철, 1999, Micro-damage Process in Granite Under the Stage of Water-saturated Triaxial Compression, The Journal of Engineering Geology, 9(3), 243-251.
  2. 장보안, 지훈, 장현식, 2010, 황등화강암을 이용한 암석의 손상기준 결정방법 연구, 대한지질공학회, 20(1), 89-100.
  3. 장수호, 2002, 응력수준에 따른 암석의 손상 특성과 심부 터널 주변 암반 손상영역의 해석, 공학박사학위논문, 서울대학교, 1-247.
  4. 장수호, 이정인, 2005, 응력수준에 따른 암석의 손상기준 결정에 관한 실험적 연구, 대한화약발파공학회, 23, 31-4.
  5. Bieniawski, Z. T., 1967, Stability concept of brittle fracture propagation in rock, Engineering Geology, 2, 149-162. https://doi.org/10.1016/0013-7952(67)90014-2
  6. Brace. W.F., Paulding, B.W., Jr., and Scholz, C., 1966, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., 71, 3939-3953. https://doi.org/10.1029/JZ071i016p03939
  7. Cai, M., Morioka, H., Kaiser, P.K., Tasaka, Y., Kurose, H., Minami, M., and Maejima, T., 2007, Back analysis of rock mass strength parameters using AE monitoring data, International Journal of Rock Mechanics and Mining Sciences, 44, 538-549. https://doi.org/10.1016/j.ijrmms.2006.09.012
  8. Chang, S.H., and Lee, C.I., 2004, Estimation of cracking and damage mechanisms in rock under trixaxial compression by moment tensor analysis of acoustic emission, International Journal of Rock Mechanics and Mining Sciences, 41, 1069-1086. https://doi.org/10.1016/j.ijrmms.2004.04.006
  9. Eberdhart, E., Stead, D., Stimpson, B., and Read, R.S., 1995, Identifying crack initiation and propagation thresholds in brittle rock, Canadian Geotechnical Journal, 35(2), 222-233.
  10. Eberdhart, E., Stead, D., Stimpson, B., and Read, R.S., 1999a, Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures, Rock Mechanics and Rock Engineering, 32(2), 81-99. https://doi.org/10.1007/s006030050026
  11. Eberdhart, E., Stead, D., and Stimpson, B., 1999b, Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression, International Journal of Rock Mechanics and Mining Sciences, 36(3), 361-380. https://doi.org/10.1016/S0148-9062(99)00019-4
  12. Emsley, S., Olsson, O., Stenberg, L., Alheid H.J., and Falls, S., 1997, ZEDEXF a study of damage and disturbance from tunnel excavation by blasting and tunnel boring, Technical Report 97-30, Swedish Nuclear Fuel and Waste Management Co, 1-280.
  13. Falmagne, V., Kaiser, P.K., and Martin, C.D., 1998, Microseismic monitoring and rock mass degradation, Proceedings of the 100th Canadian Institute of Mining and Metallurgy Annual General Meeting, Montreal, 1-8.
  14. Grosse., C.U., and Ohtsu, M., 2008, Acoustic Emission Testing, Springer-Verlag Berlin Heidelberg, 1-406.
  15. Kachanov, M., 1980, Continuum model of medium with cracks, Journal of Engineering Mechanics Division ASCE 106, 1039-1051.
  16. Kim, J.S., Kwon, S., Sanchez, M., and Cho, G.C., 2011, Geological storage of high level nuclear waste, KSCE Journal of Civil Engineering, 15, 721-737. https://doi.org/10.1007/s12205-011-0012-8
  17. Martin C.D., 1993, Strength of massive Lac du Bonnet granite around underground openings. Ph.D. thesis, Department of Civil and Geological Engineering, University of Manitoba, Winnipeg, 1-556.
  18. Martin, C.D. and Chandler, N.D., 1994, The progressive fracture of Lac du Bonnet granite, International Journal of Rock Mechanics and Mining Science & Geomechanics, 32, 643-659.
  19. Martin, C.D. and Read, R.S., 1996, AECL's Mine-by experiment: a test tunnel in brittle rock, Proceedings of the Second North American Rock Mech. Symposium, 2, 13-24.
  20. Ohtsu, M., 1991, Simplified moment tensor analysis and unified decomposition of acoustic emission source: application to in situ hydrofracturing test, Journal of Geophysical Research, 96, 6211-6221. https://doi.org/10.1029/90JB02689
  21. Ohtsu, M., Kaminaga, Y., and Muzo, C.M., 1999, Experimental and numerical crack analysis of mixed mode failure in concrete by Acoustic emission and boundary element method, Construction and Building Materials, 13, 57-64. https://doi.org/10.1016/S0950-0618(99)00008-2
  22. Ohtsu, M., and Uddin, F.A.K.M., 2008, Mechanisms of corrosion-induced cracks in concrete at meso and macro scales, Journal of Advanced Concrete Technology, 6(3), 419-429. https://doi.org/10.3151/jact.6.419
  23. Olsson, O.L., and Winberg, A., 1996, Current understanding of extent and properties of the excavation disturbed zone and its dependence of excavation method, Proceedings of the International Conference on Deep Geological Disposal of Radioactive Waste, 101-112.
  24. Ranjith, P.G., Jasinge, D., Song, J.Y., and Choi, S.K., 2008, A study of the effect of displacement rate and moisture content on the mechanical properties of concrete: Use of acoustic emission, Mechanics of Materials, 40, 453-469. https://doi.org/10.1016/j.mechmat.2007.11.002
  25. Read R.S., Chandler N.A., and Dzik E.J., 1998, In situ strength criteria for tunnel design in highly-stressed rock masses. International Journal of Rock Mechanics and Mining Science & Geomechanics, 35(3), 261-278. https://doi.org/10.1016/S0148-9062(97)00302-1
  26. Shah, K.R. and Labuz, J.F., 1995, Damage mechanisms in stressed rock from acoustic emission, Journal of Geophysical research, 100, 15527-15539. https://doi.org/10.1029/95JB01236
  27. Shigeishi, M. and Ohtsu, M., 2001, Acoustic emission moment tensor analysis: development for crack identification in concrete materials, Construction and Building Materials, 15, 311-319. https://doi.org/10.1016/S0950-0618(00)00079-9
  28. Young, R.P., Hutchins, D.A., McGaughey,J., Towers, J., Jansen D., and Bostock, M., 1989, Geotomographic imaging in the study of mining induced seismicity, Pure and Applied Geophysics, 129, 571-596. https://doi.org/10.1007/BF00874526

피인용 문헌

  1. 강원도 간성-현내 지역 화강암류 비탈면 안정성 검토 사례 연구 vol.22, pp.3, 2011, https://doi.org/10.9720/kseg.2012.3.331