위성영상에서의 적응적 압축잡음 제거 알고리즘

Content Analysis-based Adaptive Filtering in The Compressed Satellite Images

  • 최태현 (중앙대학교 첨단 영상대학원 영상학과) ;
  • 지정민 (중앙대학교 첨단 영상대학원 영상학과) ;
  • 박준훈 (중앙대학교 첨단 영상대학원 영상학과) ;
  • 최명진 (한국항공우주연구원) ;
  • 이상근 (중앙대학교 첨단 영상대학원 영상학과)
  • Choi, Tae-Hyeon (Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University) ;
  • Ji, Jeong-Min (Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University) ;
  • Park, Joon-Hoon (Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University) ;
  • Choi, Myung-Jin (Korea Aerospace Research Institute) ;
  • Lee, Sang-Keun (Graduate School of Advanced Imaging Science, Multimedia, and Film, Chung-Ang University)
  • 투고 : 2011.02.14
  • 심사 : 2011.08.17
  • 발행 : 2011.09.25

초록

본 논문에서는 위성영상을 압축하는 과정에서 발생하는 압축잡음을 내용 분석을 통해 적응적으로 제거하는 디블록킹 알고리즘을 제안 한다. 특히, 제공된 KOMPSAT(korean multi-purpose satellite)-2는 열 단위로 동일한 양자화 계수를 적용하며 고주파 성분이 많은 부분을 압축하여 효율 및 시간을 향상 시켰으나 압축률이 높은 동일 열 내에 복잡도가 낮은 부분에서 압축 잡음이 나타나는 문제점이 있다. 이러한 압축잡음을 제거하기 위해 일반적인 디블록킹 필터를 적용 시 복잡한 영역을 평활화시키는 문제점이 있다. 따라서 제안한 방법에서는 영상 분석 후 적응적 디블록킹 필터를 통해 에지를 보존하면서 격자잡음을 제거 한다. 이와 동시에 WLFPCA(weighted lowpass filter using principle component analysis)를 이용하여 큰 곡선형 경계부분의 계단잡음을 제거 하였다. 제안한 방법은 성능을 평가하기 위한 모의실험 결과로부터 기존의 방법에 비하여 객관적 화질 지표인 PSNR(peak signal to noise ratio)과 주관적 화질 지표인 MSSIM(mean structural similarity)에서 비슷하거나 향상된 결과를 보였으며 특히, 기존의 압축잡음 제거 알고리즘은 반복적 프로세싱을 통해 계단잡음을 제거하나 제안한 방법은 싱글패스(single-path) 방식으로 시간을 크게 단축시켜 실시간에 가까운 처리가 가능하도록 하였으며, 계산양을 줄여 하드웨어의 적용이 용이하게 하였다.

In this paper, we present a deblocking algorithm that removes grid and staircase noises, which are called "blocking artifacts", occurred in the compressed satellite images. Particularly, the given satellite images are compressed with equal quantization coefficients in row according to region complexity, and more complicated regions are compressed more. However, this approach has a problem that relatively less complicated regions within the same row of complicated regions have blocking artifacts. Removing these artifacts with a general deblocking algorithm can blur complex and undesired regions as well. Additionally, the general filter lacks in preserving the curved edges. Therefore, the proposed algorithm presents an adaptive filtering scheme for removing blocking artifacts while preserving the image details including curved edges using the given quantization step size and content analysis. Particularly, WLFPCA (weighted lowpass filter using principle component analysis) is employed to reduce the artifacts around edges. Experimental results showed that the proposed method outperforms SA-DCT in terms of subjective image quality.

키워드

참고문헌

  1. G.K. Wallace, "The JPEG still picture compression standard," IEEE Transaction on Consumer Electronics, vol.38, no. 1, pp. 108-124, 1992. https://doi.org/10.1109/30.156671
  2. Motion Picture Experts Group, "MPEG test model 5 draft revision 2," 1993.
  3. Information Technology-JPEG2000 Image Coding Systems, Final Committee Draft Version 1.0, ISO/IEC JTC 1/SC 29/WG 1 N1646R, 2000
  4. P.-S. Yeh, "Implementation of CCSDS lossless data compression for space and data archival applications", Proceedings of the Space Operations Conference, 2002.
  5. G. Yua, T. Vladimirovaa, and M.N. Sweeting, "Image compression systems on board satellites", Acta Astronautica, Vol. 64, Issues 9-10, pp. 988-1005, 2009. https://doi.org/10.1016/j.actaastro.2008.12.006
  6. G.A. Moury, C. Latry, "In-orbit commissioning of SPOT5 image compression function", Proceedings of the SPIE on Earth Observing Systems VIII, vol.5151, pp.540-551, 2003.
  7. D.H. Lee, D.C. Seo, J.H. Song, M.J. Choi, H.S. Lim, "Summary of Calibration and Validation for KOMPSAT-2," International Society for Photogrammetry and Remote Sensing, vol.XXXVII, Part B1, pp.53, 2008.
  8. Y. L. Lee, H. C. Kim, and H. W. Park, "Blocking effect reduction of JPEG images by signal adaptive filtering," IEEE Transaction on Image Processing, vol. 7, pp. 229-234, 1998. https://doi.org/10.1109/83.661000
  9. M-Y. Shen and C.-C. J. Kuo, "Review of postprocessing techniques for artifact removal," journal of Visual Communication and Image Representation, 9(1), pp. 2-14, 1998. https://doi.org/10.1006/jvci.1997.0378
  10. G. Zhai, W. Lin, J. Cai, X. Yang, W. Zhang, "Efficient quadtree based block-shift filtering for deblocking and deranging," journal of Visual Communication Image Representation, no. 20, pp.595-607, 2009. https://doi.org/10.1016/j.jvcir.2009.06.004
  11. H. Paek, R.C. Kim, and S.U. Lee, "On the POCS-based postprocessing techniques to reduce the blocking artifacts in transform coded images," IEEE Transaction on Circuits System. Video Technology, vol. 8, pp. 358-367, 1998. https://doi.org/10.1109/76.678636
  12. B. Ramamurthi and A. Gersho, "Nonlinear space-variant postprocessing of block coded images", IEEE Transaction on Acoustic, Speech, Signal Processing, vol. ASSP-34, pp.1258-1268, 1986.
  13. H.C. Kim and H. W. Park, "Signal adaptive postprocessing for deblocking effects reduction in JPEG image", Proceedings of International Conference on Image Processing, vol. 2, pp. 41-44, 1996.
  14. A. Foi, V. Katkovnik, and K. Egiazarian, "Point shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images," IEEE Transaction on image processing, vol. 16, pp. 1395-1411, 2007. https://doi.org/10.1109/TIP.2007.891788
  15. D. Sun, and W. Cham, "Postprocessing of low bit-rate block DCT coded images based on a fields of experts prior," IEEE Transaction on Circuits System Video Technology, Vol.16, pp. 2743-2751, 2007.
  16. M. Nakagawa, M. Sasaki, Y. Ishizawa, "DCT-based still image compression ICS with bit-rate control", IEEE Transaction on Consumer Electronics, Vol. 38, pp. 711-717, 1992. https://doi.org/10.1109/30.156759
  17. S.K. Lee, "Edge statistics-based image scale ratio and noise strength estimation in DCT-coded images," IEEE Transactions on Consumer Electronics, vol. 55, pp. 2139-2144, 2009. https://doi.org/10.1109/TCE.2009.5373780
  18. S.K. Lee, "Simple deblocking algorithm in the compressed domain for real-time application," Optical engineering, 47(6), 067001, 2008. https://doi.org/10.1117/1.2940140
  19. Rafael C. Gonzales, Richard E. Woods, Steven L. Eddins, "Digital image processing using MATLAB," Prentice-Hall, 2004.
  20. Z. Wang, A.C. Bovik, Hamid R. Sheikh and Eero P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transaction on image processing, vol. 13, pp. 600-612, 2004. https://doi.org/10.1109/TIP.2003.819861