Enhanced Device Performance of IZO-based oxide-TFTs with Co-sputtered $HfO_2-Al_2O_3$ Gate Dielectrics

Co-sputtered $HfO_2-Al_2O_3$을 게이트 절연막으로 적용한 IZO 기반 Oxide-TFT 소자의 성능 향상

  • Son, Hee-Geon (School of Electrical Engineering, Pusan National University) ;
  • Yang, Jung-Il (School of Electrical Engineering, Pusan National University) ;
  • Cho, Dong-Kyu (School of Electrical Engineering, Pusan National University) ;
  • Woo, Sang-Hyun (School of Electrical Engineering, Pusan National University) ;
  • Lee, Dong-Hee (School of Electrical Engineering, Pusan National University) ;
  • Yi, Moon-Suk (School of Electrical Engineering, Pusan National University)
  • Received : 2010.12.29
  • Accepted : 2011.06.01
  • Published : 2011.06.25

Abstract

A transparent oxide thin film transistors (Transparent Oxide-TFT) have been fabricated by RF magnetron sputtering at room temperature using amorphous indium zinc oxide (a-IZO) as both of active channel and source/drain, gate electrodes and co-sputtered $HfO_2-Al_2O_3$ (HfAIO) as gate dielectric. In spite of its high dielectric constant > 20), $HfO_2$ has some drawbacks including high leakage current and rough surface morphologies originated from small energy band gap (5.31eV) and microcrystalline structure. In this work, the incorporation of $Al_2O_3$ into $HfO_2$ was obtained by co-sputtering of $HfO_2$ and $Al_2O_3$ without any intentional substrate heating and its structural and electrical properties were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The XRD studies confirmed that the microcrystalline structures of $HfO_2$ were transformed to amorphous structures of HfAIO. By AFM analysis, HfAIO films (0.490nm) were considerably smoother than $HfO_2$ films (2.979nm) due to their amorphous structure. The energy band gap ($E_g$) deduced by spectroscopic ellipsometer was increased from 5.17eV ($HfO_2$) to 5.42eV (HfAIO). The electrical performances of TFTs which are made of well-controlled active/electrode IZO materials and co-sputtered HfAIO dielectric material, exhibited a field effect mobility of more than $10cm^2/V{\cdot}s$, a threshold voltage of ~2 V, an $I_{on/off}$ ratio of > $10^5$, and a max on-current of > 2 mA.

투명 산화물 반도체 (Transparent Oxide-TFT)를 활성층과 소스/드레인, 게이트 전극층으로 동시에 사용한 비결정 indium zinc oxide (a-IZO), 절연층으로 co-sputtered $HfO_2-Al_2O_3$ (HfAIO)을 적용하여 실온에서 RF-magnetron 스퍼터 공정에 의해 제작하였다. TFT의 게이트 절연막으로써 $HfO_2$ 는 그 높은 유전상수( > 20)에도 불구하고 미세결정구조와 작은 에너지 밴드갭 (5.31eV) 으로 부터 기인한 거친계면특성, 높은 누설전류의 단점을 가지고 있다. 본 연구에서는, 어떠한 추가적인 열처리 공정 없이 co-sputtering에 의해 $HfO_2$$Al_2O_3$를 동시에 증착함으로써 구조적, 전기적 특성이 TFT 의 절연막으로 더욱 적합하게 향상되어진 $HfO_2$ 박막의 변화를 x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE)를 통해 분석하였다. XRD 분석은 기존 $HfO_2$ 의 미세결정 구조가 $Al_2O_3$와의 co-sputter에 의해 비결정 구조로 변한 것을 확인 시켜 주었고, AFM 분석을 통해 $HfO_2$ 의 표면 거칠기를 비교할 수 있는 RMS 값이 2.979 nm 인 것에 반해 HfAIO의 경우 0.490 nm로 향상된 것을 확인하였다. 또한 SE 분석을 통해 $HfO_2$ 의 에너지 밴드 갭 5.17 eV 이 HfAIO 의 에너지 밴드 갭 5.42 eV 로 향상 되어진 것을 알 수 있었다. 자유 전자 농도와 그에 따른 비저항도를 적절하게 조절한 활성층/전극층 으로써의 IZO 물질과 게이트 절연층으로써 co-sputtered HfAIO를 적용하여 제작한 Oxide-TFT 의 전기적 특성은 이동도 $10cm^2/V{\cdot}s$이상, 문턱전압 2 V 이하, 전류점멸비 $10^5$ 이상, 최대 전류량 2 mA 이상을 보여주었다.

Keywords

References

  1. K. Nomura, H. Ota, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004) https://doi.org/10.1038/nature03090
  2. Kimmon Lee, Jae Hoon Kim, Seongil Im, Chang Su Kim, and Hong Koo Baik, APL, 89, 133507 (2006)
  3. Y. L. Wang, W. T. Lim, D. P. Norton, S. J. Pearton, I. I. Kravchenko, J. M. Zavada, APL, 90, 232103 (2007)
  4. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, APL, 86, 013503 (2005)
  5. S. Kwon, J. W. Park, Philip D. Rack, Electrochemical and Solid-State Letters, 12 (7), H278-H280 (2009) https://doi.org/10.1149/1.3129505
  6. B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine, APL, 89, 062103 (2006)
  7. D. C. Paine, B. Yaglioglu, Z. Beiley, S. H. Lee, Science Direct, 516, 5894-5898 (2008)
  8. E. Fortunato, P. Barquinha, A Pimentel, L. Pereira, G. Goncalves, and R. Martins, Phys. Stat. sol. (RRL) 1, No. 1, R34-R36 (2007) https://doi.org/10.1002/pssr.200600049
  9. E. Fortunato, P. Barquinha, G. Goncalves, L. Pereira, R. Martin, Science Direct 52, 443-448, (2008)
  10. Seongpil Chang, Yong-Won Song, Sanggyu Lee, Sang Yeol Lee, and Byeong-Kwon Ju, APL, 92, 192104 (2008)
  11. W. T. Lim, S. H. Kim, Y. L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, Journal of The Electrochemical Society, 155 (6) H383-H385 (2008) https://doi.org/10.1149/1.2903294
  12. Z. L. Pei, L Pereira, G. goncalves, P. Barquinha, N. Franco, E.Alves, A. M. B. Rego, R. Martins, and Fortunato, Electrochemical and Solid-state Letters, 12 (10) G65-G68 (2009) https://doi.org/10.1149/1.3186643
  13. Luis Pereira, Pedro Barquinha, Goncalo Goncalves, Anna Vila, Antonis Olziersky, Joan Morante, Elvira Fortunato, and Rodrigo Martins, Phys. Status Solidi A 206, No. 9, 2149-2154 (2009) https://doi.org/10.1002/pssa.200881799
  14. R. Wallace and G. Wilk, MRS Bull, 27, 192 (2002)
  15. H. R. Jones and M. K. Wiles, J. Phys. Chem. 78, 8356 (1999)