초록
데이터 중심적인 네트워크인 무선 센서 네트워크는 대량의 센서 노드들이 광범위한 지역에 조밀하게 분산 배치되어 동작한다. 센서 노드들은 일반적으로 열린 환경에서 독립적으로 동작하기 때문에 보안 공격에 취약하다. 본 논문에서는 무선 센서 네트워크를 위한 콘텐츠 기반 이상 탐지 기법을 제안한다. 제안 기법은 무선 센서 네트워크의 특징인 특정한 현상을 여러 개의 센서 노드가 동시에 감지한다는 특성과 센서 노드에서 측정된 데이터인 콘텐츠는 어떤 특정 범위 안에서 변한다는 특성을 이용한다. 제안 기법은 훈련 단계, 적용 단계와 보정 단계로 구성되며 적용 단계에서 거리 기반 이상 탐지(distance-based anomaly detection) 기법을 이용하여 얻게 된 이상치 후보를 보정 단계로 보낸다. 보정 단계는 동일한 현상을 동시에 감지한 센서 노드들의 데이터로 구성된 콘텐츠 테이블과 이상치 후보를 비교, 분석함으로써 이상 탐지 기법의 성능을 향상시킨다. 시뮬레이션을 통해 제안 탐지 기법이 높은 탐지율과 낮은 오탐율을 가진다는 것을 확인할 수 있었다.
In many applications, wireless sensor networks could be thought as data-centric networks, and the sensor nodes are densely distributed over a large sensor field. The sensor nodes are normally vulnerable in terms of security since they are very often deployed in a hostile environment and open space. In this paper, we propose a scheme for contents-based anomaly detection in wireless sensor networks. In this scheme we use the characteristics of sensor networks where several nodes surrounding an event point can simultaneously detect the phenomenon occurring and the contents detected from these sensors are limited to inside a certain range. The proposed scheme consists of several phases; training, testing and refining phases. Anomaly candidates detected by the distance-based anomaly detection scheme in the testing phase are sent to the refining phase. They are then compared in the sink node with previously collected data set to improve detection performance in the refining phase. Our simulation results suggest the effectiveness of the proposed scheme in this paper evidenced by the improvements of the detection rate and the false positive rate.