Study of Effective Cryoprotectants on the Cryopreservation of Porcine Mesenechymal Stem Cells

돼지 중간엽 줄기세포 동결에 있어서 동결보호제에 따른 특성 연구

  • Kim, Mi-Kyeong (Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University) ;
  • Park, Hyoung-Joon (Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University) ;
  • Rho, Gyu-Jin (Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Chung-Hei (Dept. of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Cho, Jae-Hyeon (Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University)
  • 김미경 (경상대학교 수의과대학 수의학과) ;
  • 박형준 (경상대학교 수의과대학 수의학과) ;
  • 노규진 (경상대학교 수의과대학 수의학과) ;
  • 김충희 (경남과학기술대학교 동물생명과학과) ;
  • 조재현 (경상대학교 수의과대학 수의학과)
  • Received : 2011.08.17
  • Accepted : 2011.09.26
  • Published : 2011.12.31

Abstract

The objective of this study was to investigate the effective cryoprotectants for the cryopreservation of porcine mesenechymal stem cells (pMSCs). In order to understand the effectiveness of various cryoprotectants on pMSCs, we studied the most commonly used cryoprotectants; dimethyl sulfoxide (DMSO), ethylene glycol (EG), DMSO and EG. pMSCs were isolated from bone marrow matrix of piglet (2 month) and characterized by alkaline phopshatase (AP) activity, colony forming, and differentiation to adipocyte. In slow cooling cryopreservation, the pMSCs were exposed to cell medium containing Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% DMSO, 1.5M EG and 5% DMSO/0.75M EG, respectively, and freezed to $-1^{\circ}C$/min from $25^{\circ}C$ up to $-80^{\circ}C$ in a cryo-container. The proportion of viable cells and the growing rates in fresh pMSCs were significantly (P<0.05) higher than those of other groups, but did not differ between the cryopreserved groups. The expression of Sox-2 and Nanog gene was increased by extending culture time in cryopreserved groups. The expression of Bax gene in cryopreserved groups was similar with fresh pMSCs. Moreover, the gene expression of adipocyte-specific marker as well as chondrogenic/osteogenic factors in cryopreserved groups was similarly to fresh pMSCs. Taken together, our results suggested that all these cryoprotectants of 10% DMSO, 1.5M EG and 5% DMSO/0.75M EG could be used for cryopreservation of the pMSCs.

돼지 중간엽 줄기세포를 Dimethyl sulfoxide(DMSO), Ethylene glycol(EG), 그리고 DMSO/EG을 이용하여 세포동결을 유도한 후 적절한 동결보호제를 알아보았다. 2개월 이내 돼지 골수에서 중간엽 줄기세포를 분리하여 colony 형성 및 alkaline phosphatase(AP) 활성을 확인하고, 지방 세포로의 분화 유도에 의한 줄기세포의 능력을 확인하였다. 이들 중간엽 줄기세포의 완만 동결을 위해, DMEM에 각각 10% DMSO, 1.5M EG, 5% DMSO/0.75M EG의 동결보호제를 섞은 후 cryovial에 넣고, cryo-containe를 이용하여 $25^{\circ}C$에서 $-80^{\circ}C$까지 $-1^{\circ}C$/min 속도로 동결하였다. 일주일간 저장 후 세포의 생존률은 미동결 세포는 동결 세포군보다 유의적으로 높음을 확인할 수 있었으나, 동결 처리군 간에는 차이가 없었다. 줄기세포 유지 유전자인 Sox-2와 Nanog 발현은 동결 후 배양 시간에 따라 발현량이 증가하는 경향을 보였으나, 동결처리군 간에는 유의적인 차이가 없었다. 세포사 관련 유전자인 Bax의 발현은 모든 군에서 비슷하였다. 또한 지방, 연골 및 뼈세포 분화와 관련된 유전자의 발현은 동결 전 세포와 동결 후 세포군에서 비슷한 경향을 보였다. 이러한 결과는 돼지중간엽 줄기세포 동결함에 있어서 10% DMSO, 1.5MEG, 5% DMSO/0.75M EG 모두 적절한 동결보호제로 이용할 수 있음을 시사한다.

Keywords

References

  1. Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW (2004) Cryopreservation of stem cells using trehalose: Evaluation of the methods using a human hematopoietinc cell line. Stem Dev 13:295-305. https://doi.org/10.1089/154732804323099226
  2. Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 15:3016-3020.
  3. Croft AP, Przyborski SA (2004) Mesenchymal stem cells from the bone marrow stroma; basic biology and potential for cell therapy. Curr Anaesth Crit Care 15:410-417. https://doi.org/10.1016/j.cacc.2004.08.011
  4. D'ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 15:2971-2981.
  5. Fehrer C, Lepperdinger G (2005) Mesenchymal stem cell aging. Exp Geront 40:926-930. https://doi.org/10.1016/j.exger.2005.07.006
  6. Go YE, Kim HJ, Jo J, Lee HJ, Do JT, Ko JJ, Lee DR (2011) Comparative analysis for in vitro differentiation potential of induced pluripotent stem cells, embryonic stem cells, and multipotent spermatogonial stem cells into germ-lineage cells. Dev Reprod 15:41-52.
  7. Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22:487-500. https://doi.org/10.1634/stemcells.22-4-487
  8. Ha SY, Jee BC, Suh CS, Kim HS, Oh SK, Kim SH, Moon SY (2005) Cryopreservation of human embryonic stem cells without the use of programmable freezer. Hum Reprod 20:1779-1785. https://doi.org/10.1093/humrep/deh854
  9. Haack-Sorensen M, Bindslev L, Mortensen S, Friis T, Kastrup J (2007) The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotheraphy 9:328-337. https://doi.org/10.1080/14653240701322235
  10. Han CM, Wang SY, Lai PP, Cen HH (2007) Human bone marrow-derived mesenchymal stem cells differentiate into epidermal-like cells in vitro. Differentiation 75:292-298. https://doi.org/10.1111/j.1432-0436.2006.00140.x
  11. Heng BC, Ye CP, Liu H, Toh WS, Rufaihah AJ, Yang Z, Bay BH, Ge Z, Ouyang HW, Lee EH, Cao T (2006) Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J Biomed Sci 13:433-445. https://doi.org/10.1007/s11373-005-9051-9
  12. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294-1301. https://doi.org/10.1634/stemcells.2005-0342
  13. Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y, Ohgushi H (2005) Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng 11(5-6):663-673. https://doi.org/10.1089/ten.2005.11.663
  14. Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS (2005) The fatty acid-binding protein, ap2, coordinates macrophage cholesterol trafficking and inflammatory activity. J Bio Chem 13:12888-12895.
  15. Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47(5):935-945. https://doi.org/10.1111/j.1537-2995.2007.01212.x
  16. Milosevic J, Storch A, Schwarz J (2005) Cryopreservation does not affect proliferation and multipotency of murine neural precursor cells. Stem Cells 23:681-688. https://doi.org/10.1634/stemcells.2004-0135
  17. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:635-642.
  18. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147. https://doi.org/10.1126/science.284.5411.143
  19. Seok HJ, Kim YE, Park JA, Lee Y (2010) Transcriptional regulation of human Nanog gene by OCT4 and SOX2. Dev Reprod 14:123-129.
  20. Takase K, Sawai M, Yamamoto K, Yata J, Takasaki Y, Teraoka H, Tsukada K (1992) Reversible G1 arrest induced by dimethyl sulfoxide in human lymphoid cell lines: kinetics of the arrest and expression of the cell cycle marker proliferating cell nuclear antigen in Raji cells. Cell Growth Differ 3:515-521.
  21. Williams GT, Smith CA (1993) Molecular regulation of apoptosis: genetic control on cell death. Cell 74:777-779. https://doi.org/10.1016/0092-8674(93)90457-2
  22. Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251-306.