
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011 2235

Copyright ⓒ 2011 KSII

This work was supported by the IT R&D program of MIC/KEIT. [10035157, Development of Digital Forensic

Technologies for Real-Time Analysis]. And, the fourth author of this research was supported by the MKE(Ministry

of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program

supervised by the NIPA(National IT Industry Promotion Agency)” (NIPA-2011-(C1090-1131-0005))

DOI: 10.3837/tiis.2011.11.021

GPU-Accelerated Password Cracking of
PDF Files

Keonwoo Kim

1
, Sangsu Lee

1
, Dowon Hong

1
 and Jae-Cheol Ryou

2

1 Information Security Research Division, ETRI

Daejeon, 305-700 - KOREA

[e-mail: wootopian@etri.re.kr]
2 Department of Computer Engineering, Chungnam National University

Daejeon, 305-764 - KOREA

[e-mail: jcryou@cnu.ac.kr]

*Corresponding author: Keonwoo Kim

Received May 11, 2011; revised September 6, 2011; accepted September 28, 2011;

published November 29, 2011

Abstract

Digital document file such as Adobe Acrobat or MS-Office is encrypted by its own ciphering

algorithm with a user password. When this password is not known to a user or a forensic

inspector, it is necessary to recover the password to open the encrypted file. Password cracking

by brute-force search is a perfect approach to discover the password but a time consuming

process. This paper presents a new method of speeding up password recovery on Graphic

Processing Unit (GPU) using a Compute Unified Device Architecture (CUDA). PDF files are

chosen as a password cracking target, and the Abode Acrobat password recovery algorithm is

examined. Experimental results show that the proposed method gives high performance at low

cost, with a cluster of GPU nodes significantly speeding up the password recovery by

exploiting a number of computing nodes. Password cracking performance is increased linearly

in proportion to the number of computing nodes and GPUs.

Keywords: Password cracking, GPU, acceleration of password recovery, brute-force, PDF

2236 Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files

1. Introduction

From the viewpoint of computer forensics, an encrypted document file may potentially

contain a wealth of information about users and their activities. This information can have

great value as an evidence in a criminal investigation [1][2]. However, computer files are

easily encrypted by user passwords to protect their contents from unauthorized access. When a

suspect does not reveal his password or a user does not remember it, encrpted files can be

decrypted by password cracking, which is the process of recovering passwords from encrypted

files. It might be of help to a forensic inspector to gain access to encrypted files or a user to

recover a forgotten password. The operating system stores user passwords in an encrypted

hash form. Unlike an OS log-in password to authenticate a user, a user password in

applications such as Adobe Acrobat and MS-Office are actually used to encrypt files [3].

The use of a password dictionary [4] is one of the fastest ways to recover a password.

Generally, many people have a tendency to choose their passwords as human-memorable

words like using their personal information or appending a digit to the information. A part or

whole of the password may be found in the pre-defined dictionary. To discover a password

depends entirely on a vast dictionary of common password phrases, which can crack simplistic

passwords like 12345 and similar patterns. However, there is very little possibility to crack

password using a password dictionary if anyone uses a mix of lowercase and uppercase letters,

digits and symbols as a password. Making an effective password dictionary including

randomized passwords is another challenge.

Rainbow tables are usually used in recovering a password in a short time as storing long lists

of pre-computed password hashes. It is a form of Time-Memory Trade-Off (TMTO) [5], using

less CPU at the cost of more storage. This method requires a considerable amount of

preparation time, but it allows the password recovery to be executed faster. However, as the

size of passwords grows, it will take as much time to make the table as the brute-force cracking

time. Moreover, not all random passwords can be found by hashes of tables. The password

recovery process of common applications includes other types of cryptographic operations and

requires many repeated computations of the same algorithm. Therefore, the rainbow table

attack might be suitable for cracking a password with a cryptgraphic algorithm like a Data

Encryption Standard (DES), not for the password recovery with two and more algorithms.

This approach is also partially effective to recover passwords.

On the contrary, a brute-force cracking [6] is a complete method to discover a password. It

simply tries all candidate passwords, every possible character combination, until it hits the

right one. In the worst case, this would involve traversing the entire search space. The time

elapsed to find a correct password by brute-force is related to password length and complexity.

Longer password increases exponentially the number of candidate passwords to be checked.

Also, using various character types for a password, such as adding uppercase characters,

numbers and symbols other than lowercase letters, significantly increases the time required to

decipher a password. Therefore, we need to accelerate brute-force cracking in order to search

all available passwords space. Most password cracking toolkits are software applications

using only CPU computing ability. The performance limit of these tools to achieve a goal is

obvious because CPU works as a data cache and a control processor and also in data

processing. In order to reduce password cracking time, hardware acceleration can increase the

number of candidate passwords per second which must be checked.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011 2237

This paper proposes a new method for speeding up password cracking on Graphic

Processing Unit (GPU) to parallelize the search. The compute-intensive aspect of the task is

performed through data parallelism of many processor cores on the chip. GPU is already

installed in most computers so that additional cost for password recovery is not a big problem.

Our cracking target is an Adobe Acrobat PDF application. We assign a task to run the

sequential part of the recovery step on the CPU and the parallel computational part including

cryptgraphic operations on the GPU. To try all combinations of available letters, we apply an

exhaustive password search, not a password dictionary attack and a rainbow table approach.

The experiment by using one GPU and multi GPUs is compared with the software approach.

In the remaining part of this paper, we introduce a password recovery technique that uses a

cluster of GPU nodes to decrease the search time of a very long password. The proposed

method is proved to be the most efficient way to make full use of all computing devices

without having the same candidate paswords between nodes. We provide an estimated cost of

the equipment to give an idea on the resources required for successful cracking of long

passwords.

2. Related Work

2.1 Hardware Acceleration of Brute-force Password Cracking

Hardware acclerators can be used to greatly speed up brute-force password cracking.

Password recovery process of encrypted files usually includes many repeated cryptographic

operations. Exelllent capabilities of hardware acceleration have been already proved in the

fields of cryptographic analysis and in the security domain.

First, the graphic processor is used to speed up brute-force password recovery over genaral

processor. GPU as a coprocessor accelerates cryptographic computing [7][8][9][10][11][12]

such as block cipher and hash function as well as graphic processing. A commercial product

claims an ability to test up to 8,400 passwords a second using GTX 295 to recover MS-Office

2007 password [13]. And, the recovery process of an eight-character Windows Vista logon

password with Windows NT LAN Manager (NTLM) hashing would take only three to five

days by GPU acceleration, while a modern dual-core PC searches about 55 trillion possible

passwords, tries up to 10 million passwords per second, and performs a complete analysis in

about two months [13]. Besides acceleration of password cracking, GPU is used in speeding

up Secure Socket Layer (SSL) in SSLShader [14], and outperforming the exsiting software

routers [15]. And, fast GPU-based implementaions of the brute-force K-nearest neighbor

search algorithm are shown by [16], and a parallel fuzzy connected image segmentation

algorithm with GPU is presented by [17]. Representative GPUs that can be used for general

operations such as password cracking are Nvidia Geforce, Tesla, and Quadro series.

Second, password cracking can be significantly enhanced by a dedicated cracker such as an

Application Specific Integrated Circuits (ASIC) acceleration chip or a Field-Programmable

Gate Array (FPGA)-based machine. The dedicated ASIC chip for password cracking can give

an answer within minutes, while a software toolkit may take a few years for the same target.

However, using the ASIC chip is not cost effective since the chip fabricated to achieve a

special purpose of password recovery cannot be utilized in other areas. Alternative approach to

commercially available hardware system of ASIC cracker is to use FPGA, which satisfies both

high performance and relatively low cost for brute-force password search. The Electronic

Frontier Foundation (EFF) built a dedicated password cracker using FPGAs in 1998 and broke

a DES 56-bit key in 56 hours, testing over 90 billion keys per second [18][19]. In 2008, the

http://en.wikipedia.org/wiki/Password_cracking#cite_note-elcomsoft-3

2238 Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files

copacobana rivyera machine reduced the time to break DES in less than a day, using 128

Spartan-3 5000's [20][21]. And, the copacobana introduced efficient implementations of more

complex cryptanalysis on asymmetric cryptosystems, which are elliptic curve cryptosystems

and number cofactorization for RSA algorithm [22].

Third, the architecture of a Cell processor [23] makes it better suited to hardware-assisted

brute-force password cracking. A Cell chip consists of one general processor called a Power

Processing Element (PPE) and eight parallel coprocessors called Synergistic Processing

Elements (SPEs). As a practical cracking, a PlaySation3 (PS3) gaming console with one chip

shows an improved ability compared with a CPU-based machine in the similar price range.

PS3, which is turned into a Crackstation, works up to 1.4 billion cycles per second as

implementing common ciphers and hash functions using vector computing [24]. This speed

boost is attributed to SPEs, each one of which can be effectively trying passwords at the same

time.

Fourth, a Tableau TACC 1441 hardware accelerator yields 6 to 30 times gain in

performance over CPU. It accelerates the decryption of MS-Office 2007 at a speed of 3,201

passwords a second, while Intel core i5 750 CPU searches only 764 passwords [25].

Connecting multiple accelerators together results in increased performance but this hardware

is less cost effective compared with GPU and FPGA accelerator.

2.2 GPU and CUDA

Until a few years ago, to solve non-graphics problem, users had to be knowledgeable about

graphics programming languages like OpenGL or Direct3D and had to couch their problems

in graphical terms. However, Nvidia has introduced a parallel programming model and

software environment called Compute Unified Device Architecture (CUDA) [26] to make

possible general purpose computation on its graphic chipset. Even if developers who want to

make password cracking program using a GPU do not know graphical languages and

hardware at all, they can get a result on the CUDA platform with the standard programming

language such as C/C++.

GPU device is implemented as a set of multiprocessors. For example, Geforce 9800 GTX

[27] has 16 multiprocessors, and a multiprocessor contains 8 thread processors. At any given

clock cycle, each processor executes the same instruction but operates on different data. A

multiprocessor has 16KB readable/writable on-chip shared memory. Access to device

memory is not often by caching frequently used data into the shared memory.The global

memory, constant memory and texture memory of the device can be read from or written to by

the host and are persistent across kernel launches by the same application [26]. Besides a

card-type GPU, the server-type GPU system can be equipped with a host. Tesla S1070 [28] is

a server-type parallel computing system with 960 cores in a unit chassis, and it is designed to

solve computing challenges more quickly.

GPU code is written by an extension, declaration, and execution configuration defined in

CUDA and the code is distinguished from CPU code. The described code is separately

compiled for a CPU host and a GPU device by the CUDA compiler. A portion that is executed

many times, but independently on different data, can be isolated into a function that is

executed on the device with many different threads [26]. A program on a GPU mapped from

the compute-intensive function of a CPU is called a kernel. A kernel operates on arrays of

multitudes of blocks called grid, and each block has thread execution units. All threads are

scheduled by a thread execution manager. In the case of 9800 GTX, 12,288 threads can be

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011 2239

executed at the same time. Every thread is identified by its blockID and threadID, which are a

block number within a grid and a thread number within a block.

3. Password Recovery of an Encrypted PDF File

All strings and streams of a PDF file are encrypted by a “Document Open Password” and/or a

“Permissions Password”. An open password is used both to prevent reading the document by

an unauthorized user and to decrypt the encrypted file by an authorized user. To edit and print,

the document is restricted by a permissions password. We have to know the open password to

open an encrypted file. In order to recover the open password, two password verification

methods can be used: one that uses the Ovalue algorithm and the other that uses Uvalue

algorithm.

First, an open password can be recovered by computing and comparing Ovalue. Fig. 1

shows the process of Ovalue computation. Security entities such as Ovalue, Uvalue, IDvalue,

and Pvalue must be obtained from the file in advance before calculating Ovalue. A guessed

open password is used as input plaintext of RC4 stream cipher [29] to output Ovalue. A

guessed permission password is used as input of MD5 hash function [30] to make an

encryption key of RC4. If the permissions password is not chosen by a user, the open password

is used to substitute it.

Pad or Truncate

String to 32 Bytes

Open Password

RC4

(20 times)

Plaintext

32 bytes

Ovalue

(32 bytes)

Pad or Truncate

String to 32 Bytes

MD5

(51 times)

Message

32 bytes

Hash Result

16 bytes

Permissions Password

Key xor (0~19)

16 bytes

Fig. 1. Ovalue computation process of a PDF file

Ovalue algorithm of the box below describes the flow chart in Fig. 1 more specifically. By

Ovalue algorithm, we can see that the guessed candidate password is not a right open password

if the calculated Ovalue is not the same as the obtained Ovalue. This procedure continues

using a new guessed password until two Ovalues agree with each other.

2240 Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files

[Ovalue algorithm]

1. A guessed permissions password should be exactly 32 bytes. If the password string is less than

32, pad it by appending the following PDF padding data.

28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08

2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A

If the length is more than 32 bytes long, use its first 32 bytes.

2. After initializing MD5 hash function, 32-byte data of step 1 become input of this function.

Hashed value is calculated for the first time.

3. Following procedure is repeated 50 times.

A. Previous hashed value becomes input of next hash function. First input of this step is the

result of step 2.

B. Process the hash function.

4. The most significant 16-byte data of the final MD5 output in step 3 are used as an encryption

key of RC4 cipher.

5. A guessed open password is padded or truncated to make it 32-byte like step 1. Padded 32-byte

data are input plaintext of RC4 stream cipher.

6. Input plaintext of step 5 is encrypted using the encryption key of step 4.

7. Following procedure is repeated 19 times.

A. Output ciphertext of previous RC4 cipher becomes input plaintext of next RC4. First

output of this step is the result of step 6.

B. New encryption key for this step is changed every time by Exclusive OR (XOR) operation

of the encryption key of step 4 and iteration times.

8. The final result of step 7 is a calculated Ovalue.

Second, an open password can be recovered by generating and comparing Uvalue as in Fig.

2. An open password as a candidate password is input to generate Uvalue with Ovalue, Pvalue,

and IDvalue. The correctness of the candidate password is verified by comparing the

calculated Uvalue with the obtained Uvalue. We present Uvalue algorithm to explain the flow

chart in Fig. 2 in greater detail.

MD5

Candidate

Password
Ovalue Pvalue IDvalue

Initial Encryption Key

MD5

Yes

Correct Open Password

MD5

Padding Data

MD5MD5

MD5

• • • •

RC4

• • • •

Calculated Uvalue

same Obtained Uvalue
No

Initial Plaintext

Fig. 2. Password recovery process by generaing and comparing Uvalue

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011 2241

[Uvalue algorithm]

1. The size of a candidate password should be 32 bytes. If the size is not 32 bytes, pad or truncate

string to 32 bytes.

2. The candidate password is hashed by MD5 hash function with obtained 32-byte Ovalue, 4-byte

Pvalue and 16-byte IDvalue.

3. The hashed result of step 2 becomes the input of second MD5. And, the second hashed result is

a new input of next MD5 again. This procedure is repeated 49 times. The final hashed value is

an initial encryption key of RC4 stream cipher.

4. Hashed value of 32-byte padding data and 16-byte IDvalue is the first input of RC4 stream

cipher.

5. The RC4 encryption process is repeated 20 times. The result of step 4 as input data is first

encrypted using the result of step 3 as an encryption key. Previous RC4 output stream is used as

the input data of next RC4. Key buffer value used in each encryption process is changed every

time. The last RC4 output stream is a calculated Uvalue.

6. If the calculated Uvalue is equal to the obtained Uvalue, the candidate password is proven as a

correct open password. Otherwise, new candidate passwords are replaced one by one, and the

same consecutive process is repeated until two Uvalues are identical.

To open a file encrypted by both an open password and a permission password, a recovery

algorithm by Uvalue comparison is preferred to Ovalue algorithm. We should guess not only

an open password but also a permissions password if Ovalue algorithm is used. A document

secured only by a permissions password opens without an open password.

Table 1. Cracking algorithm to recover an open password of PDF files

Open password Permissions password Open
Algorithm to recover an

open password

O O X Uvalue

X O O X

O X X Ovalue, Uvalue

4. Acceleration of Password Cracking on GPU

There is a limit on performance to recover a password through a sequential search of a general

processor. Our password cracking approach uses both CPU and GPU to boost the performance.

In this section, we propose a method of accelerating password recovery on GPU by using

Uvalue algorithm. Geforce 9800 GTX [27] and four Tesla C1060s [31] were chosen for our

test.

4.1 Password Search Using GPU

Speeding up password search on GPU needs to avoid overlapping work between a host CPU

and a device GPU. Fig. 3 shows the password cracking job to be performed at a host and a

device. Security entities of PDF files are obtained from the host and copied into a constant

memory of the device. The host generates candidate passwords and one of the candidates is the

right password as a result of accelerating password search on GPU. Usable character types as

passwords are lower/upper case alphabet letters, arabic numerals, and special characters.

Therefore, all passwords consist of combinations of arbitrary length driven from 95 characters

and the number of available candidate passwords is calculated as:

2242 Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files

1

)(

1

)1(

1

)1(
11


















r

rra

r

ra

r

ra
N

nlmlnlml

 (1)

where N is the number of overall candidate passwords to be checked, a is the number of

one-character password at selected character types, r is the number of characters usable as

passwords of the type, and, ml and n
l are the expected maximum and minimum length of a

password. a and r are of the same value at any selected character types.

Every candidate password is 32-byte long. The number of candidate passwords to be

generated at a time is identical to the number of GPU threads that are used to accelerate

password recovery, and calculated as in (2). A candidate password is checked at one thread.

 TB
mmm 

 (2)

where m is the number of threads to be allocated to a GPU, B
m is the number of blocks

defined in a GPU, and T
m is the number of threads arrayed within a block. B

m and T
m are

changeable according to the GPU model and the cracking target.

A kernel is defined using the __global__ declaration specifier, and the number of threads for

each call is specified using a new <<<…>>> syntax [26]. Therefore, when a kernel is launched,

the dimension of grids and blocks to be executed on the device should be defined. Cracking

performance is affected by the execution configuration of a kernel with the optimal use of

on-chip memory resources. After many experiments, we define the optimum execution

configurations using Geforce 9800 GTX as <<< TB
mm , >>> = <<<128, 62>>>.

Extract
security entities

Generate
m candidate passwords

Invoke a kernel
(mB, mT)

Derive a correct
password

Save a candidate
password

Save Uvalue, Ovalue, IDvalue, Pvalue and Padding data

Thread
number = 0

Save a candidate
password

Thread 0

No

……

Yes

Thread 61
Block 0

Block 1

Block 127

.

.

.

[Host Job] [Device Job]

Thread
number

Compare
Uvalue

Compare
Uvalue

same same

Generate Uvalue

(51 times MD5,
20 times RC4)

Generate Uvalue

(51 times MD5,
20 times RC4)

Fig. 3. Password cracking job at a host and a device

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011 2243

The parallel password recovery is actually achieved by the __global__ function, being a

kernel on the device. All threads within a GPU operate the same __global__ function except

that different candidate passwords are allocated into registers within threads. In other words,

the job at thread 0 within block 0 of Fig. 3 is equal to jobs at all threads in other blocks. Each

thread distinguishes candidate passwords by a block index with a grid and a thread index

within the block. And, the function of __device__ declaration, which is executed on the device

and callable from the device only, is used for MD5 and RC4 cryptographic operation in the

__global__ function. If an Uvalue calculated by the __global__ function is not the same as the

obtained Uvalue at one of m threads, the host generates a set of new m candidate passwords

by a factor of m within N , and the next kernel is invoked in succession.

In order to minimize the access to global memory and to make full use of GPU internal

resource, the shared memory is utilized in the ciphering process. The key stream data are

stored in the shared memory during RC4 key generation. The RC4 encryption function also

places its output into the shared memory. We use 62 threads for a block and 256-byte shared

memory for one thread at a __global__ function. Therefore, all the threads of a block use

16KB shared memory. Table 2 shows the type and size of memory used in the device.

Table 2. Device memory used to recover password

Memory type Size Used data

Shared memory 16,140 bytes
Internal data used in key generation and data encryption of

RC4 __device__ function

Local memory 192 bytes Temporary data in __global__ function

Constant memory 116 bytes Ovalue, Uvalue, IDvalue, Pvalue, and PDF Padding data

If a computed Uvalue matches with an obtained Uvalue at any thread of a device, the device

returns its thread number to the host, indicating which block and thread among

TB
mm  threads is used. The value of thread number is defines as:

 1)( TIDmBID
T (3)

where BID is a block index and TID is a thread index. Initial thread number at a host is 0. As

soon as the host receives the thread number from the device, it no longer launches a kernel but

derives a real password from TB
mm 32 bytes candidate passwords in the host memory.

The remaining passwords of N candidate passwords do not need to be checked anymore.

Passwords consist of letters between ASCII code 0x20 and 0x7E. A candidate password is a

string less than 32-byte long, and it has additional padding data. The host memory has the

same candidate passwords as the device registers. Therefore, the host can extract password

letters from the starting point, indicating 32)1(erthreadnumb until two beginning

characters of padding data, 0x28 and 0xBF, sequentially appear. Continuative 0x28 and 0xBF

are not letters that can be a part of a password. Fig. 4 shows how to derive of a real password

from candidate passwords at a host. In this figure, we assume that the host generates 7,936

candidate passwords at a time and allocates them to a device. The device returns a thread

number with 95BID and 32TID at a specific thread. Then, the host derives letters from

first character of 5,923th candidate password before padding data. Extracted password is '0x74

0x65 0x73 0x 54 0x37 0x23', that is 'tesT7#'. 5,922th and 5,924th candidate passwords are

'0x74 0x65 0x73 0x 54 0x37 0x22' and '0x74 0x65 0x73 0x 54 0x37 0x24', respectively.

Search from 5,924th candidates does not progress any more.

2244 Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files

0x74 0x65 0x73 0x54 0x37 0x23 0x28 0xBF 0x2F 0x0C

starting point

0x74 0x65 0x73 0x54 0x37 0x23

26 bytes padding data

1~5922th

candidate passwords

(189,504 bytes)

5923th candidate password

(32 bytes)

.

5924th~7936th

candidate passwords

(64,416 bytes)

.

5,922 * 32

5,923 * 32

0

tesT7#

Fig. 4. Derivation of a real password from candidate passwords by a thread number

We also make use of four C1060 devices for GPU acceleration. A C1060 has 240 internal

core processers. A host counts the devices and generates m4 candidate passwords for four

devices at a time unlike using single GPU. Security entities and padding data are copied into

each constant memory of four devices, and each device processes m candidate passwords.

There is no change at __ global __ and __device__ functions as in using the single GPU. All

candidate passwords in the host memory are allocated to registers of four GPUs without

duplication as shown in Fig. 5.

1st

.

.

128*62*32 B

BID = 0

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61

BID = 1

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61

BID = 127

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61
…

2nd

3rd

62th

(62+1)th

(62*2)th

((62*127)+1)

th

(62*128)th

. . . .

. . . .

. . . .

128*62*32 B

128*62*32 B

BID = 0

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61

BID = 1

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61

BID = 127

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61
…

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61
…

.

.

.

BID = 0

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61

BID 1

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61

BID = 127

TID

= 0

TID

= 1

TID

= 2
… TID

= 60

TID

= 61
…

BID = 0 BID = 1 BID = 127

128*62*32 B

. . . .

. . . .

. . . .

. . . .

((62*128)+1)

th

~

(62*256) th

((62*384)+1)

th

~

(62*512) th

Registers of GPU 1

Candidate passwords

in host memory

((62*256)+1)

th

~

(62*384) th

Registers of GPU 2

Registers of GPU 3

Registers of GPU 4

Fig. 5. Allocation of candidate passwords from host memory to four C1060s when 128*4 blocks and 62

threads are defined

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011 2245

4.2 Test and Evaluation

To compare the GPU-accelerated recovery by a brute-force attack with the CPU-based

software approach, we measured the cracking time on a single GPU platform and a multi

GPUs platform as listed in Table 3. A single GPU platform consists of a host machine with

Intel Core2 Quad 2.66GHz CPU and 2GB RAM, and Geforce 9800 GTX [27] as a coprocessor

for GPU acceleration. A multi GPUs platform has a little more powerful host than a single

GPU platform, and uses four Tesla C1060 GPUs [31] instead of 9800 GTX. Two platforms

use Linux Fedora 7 OS, and the programming code is written on the CUDA 2.0 software

environment. The test by software approach is done on the host machine with Intel Core2

Quad 2.66GHz CPU and 2GB RAM without GPU device. The test passwords are open

passwords of Acrobat 8 Standard.

Table 3. Test environment

Platform Detailed specification

Single GPU
Host

Intel Core2 Quad 2.66GHz

2GB Memory

Device Geforce 9800 GTX

Multi GPUs
Host

Intel Xeon E5520 Quad 2.26GHz

4GB Memory

Device 4 * Tesla C1060

OS Linux Fedora 7

Programming CUDA2.0

Test Password
„Document Open Password‟ of Adobe

Acrobat 8 Standard

Table 4 shows the cracking time required for passwords with various lengths and types.

Searching begins from one-character passwords. Our test includes passwords consisting of

only the last letter, „~‟, of 95 available characters. So, we can measure the longest cracking

time for passwords with the same length, which is the worst case. All candidates are verified

by every character combination. Most passwords commonly consist of only lower case letters

or combinations of lower case letters and numbers. If upper case letters and special letters are

not included in the list of candidate passwords to be checked, search time will be very much

reduced compared with using all character combinations. The cracking time is affected by the

following conditions.

First, the cracking time increases exponentially as passwords are longer at the use of the

same character type. Using a software tool to recover a six-character password of the worst

case consisting of „~~~~~~‟ requires 428 days, while 32 and 7.4 days are required on a single

GPU and a multi GPUs platform, respectively. Cracking a seven-character password,

„~~~~~~~‟, demands 8 years using all character types on a single GPU platform. Search time

of this case increases extremely compared with the password with length of 6 characters.

Second, the time is affected by the character types used if the lengths of the passwords are

the same. Cracking time for „12345‟ changes according to the character type consisting of

candidate passwords. It takes 0.2 seconds for the numeral type and 3.5 minutes for the

combination type of numerals and lower case letters together on a single GPU platform.

Third, the recovery time is affected by both the order of character types and the order of

characters within the same character type. We check the candidate passwords in the order of

lower case letters (from „a‟ to „z‟), upper case letters (from „A‟ to „Z‟), numbers (from „0‟ to

2246 Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files

„9‟), and special characters (from „ ‟ to „~‟). Therefore, some passwords with the same length

and character type can be recovered faster than other passwords because of the location of

characters. For a simple example, „a‟ is discovered faster than „z‟ in 26 one-character

candidate passwords of only lower case letters. It takes 20 minutes to discover „zzzzzz‟ on

single GPU, whereas just 1.4 minutes for „abcdef‟. This is applied likewise to five-character

two passwords, „~~~~~‟ and „9f%aM‟.

Table 4. Experimental measurements to find out passwords

Password

length

Character

type

Test

passwords

Number of candidates

to be checked in the

worst case

Search time

Software only Single GPU Multi GPUs

4 all

~~~~ 

82,317,120 

62 min 5.2 min 1.1 min 

a5F@ 55 min 4.6 min 1 min 

abcd 173 sec 13 sec 3 sec 

5 

all 
~~~~~ 

7,820,126,495
 104 hour 8 hour 1.8 hour

9f%aM 70 hour 5.3 hour 1.2 hour

numeral

12345

111,110 2.6 sec 0.2 sec 0.05 sec

lower case

and

numeral

62,193,780 46 min 3.5 min 0.8 min

6

all

~~~~~~ 

742,912,017,120 

 1.1 years  32 day 7.4 day 

h8#D!w 40 day 3 day 0.7 day 

3UK%2r 0.65 year  18 day 4 day 

lower case 
abcdef 

321,272,406 
19 min 1.4 min 0.3 min 

zzzzzz 259 min 20 min 4.5 min 

7 
all ~~~~~~~ 70,576,641,626,495 108 year 8.0 year 1.8 year 

lower case lovesam 8,353,082,582 18 hour 84 min  19 min 

8 
all ~~~~~~~~ 6,704,780,954,517,120 10,315 years 810 year 175 year 

numeral 12345678 111,111,110 18 min 1.4 min 0.3 min 

 

The results of search time for password length of 7 and 8 using all characters in Table 4 are 

the estimate, not the experiment measurement. The time was calculated using the number of 

all candidate passwords to be searched as the worst case and the cracking performance by test 

result of length of 4 to 6 since it takes very long to get results. 

Most passwords can be recovered in much less time than the worst case time of our 

measurement. Therefore, cracking time cannot be a factor of cracking performance. The 

performance should be defined as the number of candidate passwords to be checked a second 

regardless of the password length, the character types, and the order of characters. In order to 

crack „a5F@‟ on a single GPU platform, 7,936 threads repeat 9,220 operations and 73,169,920 

of 82,317,120 candidate passwords are checked until a correct password is found. The 

remaining candidates do not need to be searched anymore, and a correct password is recovered 

at a speed of 262,000 passwords per second. The password is cracked at a speed of 1,200,000 

passwords per second on a multi GPUs platform while 20,600 passwords per second by 

software approach as shown in Fig. 6.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2247 

20,600

262,000

1,200,000

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000

software 

one 9800GTX 

four C1060 

passwords searched per second
 

Fig. 6. Password cracking performance 

 

The 9800 GTX has 128 processing cores. It does not mean that we can get a speedup of 128 

compared with the software approach since the performance of each core is not much better 

than a CPU. By many experiments, password cracking by GPU acceleration is at least 13 to 58 

times faster than software approach. Performance on a multi GPU platform is more than four 

times faster than a single GPU platform because a C1060 has more cores than a 9800 GTX. It 

is expected that the use of more powerful GPU gets better performance.  

5. High-Speed Password Recovery Using a Cluster of Computing Nodes 

To find out very long passwords, cracking time will increase enormously even it multi GPUs 

are used. For a high acceleration of password cracking, the job can be distributed over many 

computers for an additional speedup proportional to the number of available computers with 

comparable GPUs.  

5.1 Password Recovery using GPU Cluster 

A GPU cluster system consists of a number of nodes including a control node with user 

interface, and many work nodes are used to accelerate password search.  

Fig. 7 shows the password recovery process between a control node and many work nodes. 

A control node initiates and terminates the password recovery process. It obtains security 

entities, selects a set of characters and an expected minimum/maximum password length, and 

calculates the number of overall candidate passwords. Since all work nodes always inform the 

control node of their states when they are ready to recover a password, the control node can 

identify available work nodes and issue password cracking to them. After completing the 

configuration at the control node, it sends character sets and security entities to all work nodes. 

And, the control node allocates to all work nodes the starting point of candidate passwords 

scope to be checked at each work node and the number of candidate passwords for the node.  

On receiving the necessary information for password recovery from the control node, the 

work nodes generate all combinations of candidate passwords beginning from their starting 

point within the number of candidates that are allocated to them. Password cracking at all work 

nodes continues until a correct password is found at one of them. Finally, when the control 

node receives the result about the success of password search from one work node, it orders to 

terminate the remaining job to the other work nodes. Table 5 denotes notations used in Fig. 7. 
 



2248                                                   Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files 

S

[Control Node] [Work Nodes]

2. Extracts E

3. Selects C, lmax, lmin

4. Calculates N 

5. Computes (Idxn, Nn) 

Result

E ,C, (Idxn, Nn)

6. Generates candidate passwords 

7. Recover a correct password

8. Knows a password

9. Orders to stop working

1. Inform their state

Stop

10. Terminate remaining job
 

 

Fig. 7. Password recovery process using GPU Cluster 

 
Table 5. Notation and its meaning for Fig. 7 and Fig. 8 

Notation Meaning 

S  State of work node indicating whether it can be used in password recovery 

E  Security entities(Ovalue, Uvalue, IDvalue, Pvalue, and padding data) 

C  
Character set including upper/lower case alphabet letters, arabic numerals, and/or 

special characters 

min
l  Expected minimum password length 

max
l  Expected maximum password length 

N  
The number of all candidate passwords to be searched. It raises the number to the 

whole number.  

c  The number of available work nodes 

m  The number of threads defined at work nodes 

D  
The number of candidate passwords to be allocated per one work node without 

considering m  

n
Idx  Starting point of candidate passwords to be checked at each work node 

n
N  The number of candidate passwords to be allocated to each work node 

n  It means n -th work node. If c  is 88, n  becomes 0, 1,… 87 

X  
Temporary variable to set multiple of m  when D is not multiple of m . It raises 

the number to the whole number.  

Y  The number of candidate passwords to be allocated to a work node considering m  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2249 

The password recovery result for overlapping candidate passwords at any work node is 

identical. Therefore, a control node needs to inform the specific starting points to allocate 

different candidate passwords to all work nodes. And, the control node distributes the same 

number of candidate passwords to work nodes by considering the number of threads. For 

instance, 88 work nodes have ),),...(,(),,(
87871100

NIdxNIdxNIdx  , respectively, without 

duplicate candidates among N  candidate passwords. If the calculated number of candidate 

passwords to be allocated per one work node is not a multiple of the number of threads, the 

node has fewer candidate passwords than other nodes. ),( nn NIdx  is computed as shown in 

Fig. 8. Notations and meanings are denoted in Table 5. 

 

cND /  

If ( D is a multiple of m ) 

    nDIdx
n
  

 DN
n
  

Else 

mDX / , mXY   

nYIdx
n
  

YN
n
  

If(n is a last work node) 

              mYcNX /))1((  , mXY   

YN
n
  

 

Fig. 8. Algorithm allocating 
nIdx  and 

nN  to each work node 

5.2 Performance and Estimated Cost 

In this work, the KISTI Picasso system [32] is used as a GPU cluster, which consists of 110 

nodes including a control node, an administrative node, a login node, a debugging node, a 

scheduling node, and work nodes. Every node has an Intel X5450 Quadcore CPU as a host and 

an Nvidia Quadro FX-5600 GPU [33] as a device. A control node and 88 work nodes from this 

system are actually used in recovering the passwords. The performance of FX-5600 is a little 

lower than that of 9800 GTX. We measure the number of candidate passwords to be searched 

and cracking time.  

When 88 work nodes are used, a six-character password, „~~~~~~‟, is recovered in 10 hours 

at one of the 88 nodes, while 428 days and 30 days is required by the software approach and 

the single GPU platform, respectively. To find a seven-character password, „lovesam‟, it takes 

only 30 minutes whereas 563 and 43 hours using software and one GPU. The performance 

increases linearly with the number of work nodes as shown in Fig. 9. When 30 and 88 nodes 

are involved in recovering a password, 6,700,000 and 19,630,000 passwords per second are 

searched, respectively. Password recovery using 88 computing nodes is about 1,000 times 

faster than the software approach.  

 



2250                                                   Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files 

220,000 

6,700,000 

13,400,000 

19,630,000 

-

5,000,000 

10,000,000 

15,000,000 

20,000,000 

1 30 50 88

T
h

e 
n

u
m

b
er

 o
f 

p
as

sw
o

rd
s 

  
  

  
  

  
  

  
  

  
  

  
 

se
ar

ch
ed

  p
er

 s
ec

o
n

d

The number of work nodes

 
Fig. 9. Password recovery performance according to the number of GPU nodes 

 

To give an idea of the needed resources for the successful cracking of long password in a 

day, we provide the current estimated cost of the computing nodes in Table 6. For passwords 

using the same character type, the number of computing nodes increases as much as the 

number of used characters as the password length is increased by 1. For passwords with the 

same length, the required resources depend greatly on the used character types.  

 
Table 6. The Number of FX-5600 Work Nodes Needed to Recover a Password in a Worst Case in a Day 

   Character  

  type 

Password  

length 

Digit Lower Lower +  Digit 

Lower +  

Upper + 

Digit 

Lower +  

Upper + 

Digit + 

Special 

8 1 11 152 11,675 352,734 

9 1 11 * 26 152 * 36 11,675 * 62 352,734 * 95 

10 1 11 * (26^2) 152 * (36^2) 
11,675* 

(62^2) 

352,734 * 

(95^2) 

11 6 11 * (26^3) 152 * (36^3) 
11,675* 

(62^3) 

352,734 * 

(95^3) 

12 58 11 * (26^4) 152 * (36^4) 
11,675* 

(62^4) 

352,734 * 

(95^4) 

 

The resources required will be significantly reduced compared with FX-5600 if we use the 

most recent GPU. Since we assume that test passwords consist of only the last characters to 

measure the maximum time for passwords of the same length, the resource required to find 

usual passwords will be much less than our estimation cost. 

6. Conclusion 

Several approaches available to recovering user passwords of encrypted files all have both 

pros and cons. The use of a password dictionary can recover passwords with simplistic pattern 

in a short time, but the dictionary does not have all random passwords using various character 

types. Rainbow table attack allows the password recovery to be executed faster by using the 

lists of pre-computed password hashes, but this approach is not suitable for password recovery 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2251 

of common applications with two and more cryptographic algorithms. Brute-force password 

search tries every character combination as candidate passwords, therefore, it can be a perfect 

solution for cracking password. However, it is a very time consuming process. This paper 

focused on a method of accelerating password recovery using GPU. Because GPU is already 

installed in most computer systems, to use GPU has the advantage of low-cost and 

high-performance compared with the software approach that uses only the CPU processing.  

We proposed a new method of accelerating password recovery of PDF files on GPU. Our 

experiments on single GPU and multi GPUs verified a significant improvement over the 

software approach by making a clear job division between a host CPU and a device GPU 

which affects the search speed. For a drastic speed up of password recovery, we also tested 

brute-force cracking with a cluster of GPU nodes and proposed a method of taking advantage 

of all the nodes that are not using the same candidate passwords at every computing node.  

Sequential part of the recovery task such as generation of candidate passwords and 

derivation of the right password runs on the CPU, and compute-intensive part of recovery such 

as cryptographic computations is performed through data parallelism of GPU. Thus, password 

recovery using a cluster of 88 GPU nodes is 1,000 times faster than the software approach. 

Performance is increased linearly in proportion to the number of computing node as well as 

GPU. Our experimental result also shows that cracking time is affected by the following 

conditions: (1) the length of the password if the same character type is used; (2) the character 

types used if the lengths of the passwords are the same; (3) the order of character types; and (4) 

the order of characters within the same character type. Most passwords will be recovered in 

much less time than the worst case time of our measurement.  

The proposed method may be applicable in applications other than PDF files. Such a trial 

remains a possibility for future work. On the other hand, GPU may also be used to accelerate 

to the computation of a rainbow table to support two and more cryptographic algorithms. We 

will continue to explore the GPU-accelerated password search by using pre-computed table 

made by GPU acceleration.  

References 

[1] Debra L. Shinder, Ed Tittel, “Scene of the Cybercrime: Computer Forensics Handbook,” 1st 

Edition, Syngress Press, Rockland, MA, 2002.  

[2] Eoghan Casey, “Digital Evidence and Computer Crime: Forensic Science, Computers and the 

Internet,” 3rd Edition, Elsevier Academic Press, London, 2011.  

[3] S. Marechal, “Advances in Password Cracking,” Journal in Computer Virology, vol. 4, no. 1, pp. 

73-81, Nov. 2008. Article (CrossRef Link) 

[4] A. Narayanan, V. Shmatikov, “Fast Dictionary Attacks on Passwords Using Time-Space 

Tradeoff,” in Proc. of 12th ACM Conference on Computer and Communications Security (CCS 

2005), pp. 364-372, Nov. 7–11, 2005. Article (CrossRef Link) 

[5] Martin E. Hellman, “A Cryptanalytic Time-Memory Trade-Off,” IEEE Transactions on 

Information Theory, vol. 26, no. 4, pp. 401-406, July 1980. Article (CrossRef Link) 

[6] C. Paar, J. Pelzl, B. Preneel, “Understanding Cryptography: A Textbook for Students and 

Practitioners,” Springer, 2010.  

[7]  S.A. Manavski, “CUDA Compatible GPU as an Efficient Hardware Accelerator for AES 

Cryptography,” in Proc. of IEEE Int. Conference on Signal Processing and Communications 

(ICSPC 2007), pp. 65-68, Nov. 24-27, 2007. Article (CrossRef Link) 

[8] C. Li, H. Wu, S. Chen, X. Li, D. Guo, “Efficient Implementation for MD5-RC4 Encryption using 

GPU with CUDA,” in Proc. of 3rd Int. Conference on Anti-Counterfeiting, Security, and 

Identification in Communication (ASID 2009), pp. 167-170, July 18-20, 2009. Article (CrossRef 

Link) 

http://dx.doi.org/10.1007/s11416-007-0064-y
http://dx.doi.org/10.1145/1102120.1102168
http://dx.doi.org/10.1109/TIT.1980.1056220
http://dx.doi.org/10.1109/ICSPC.2007.4728256
http://dx.doi.org/doi:10.1109/ICASID.2009.5276924
http://dx.doi.org/doi:10.1109/ICASID.2009.5276924


2252                                                   Keonwoo Kim et al.: GPU-Accelerated Password Cracking of PDF Files 

[9] W. Zhou, H. Wu, X. Li, D. Guo, “Implementations of Hardware Acceleration for MD4 Family 

Algorithms based on GPU,” in Proc. of 3rd Int. Conference on Anti-Counterfeiting, Security, and 

Identification in Communication (ASID 2009), pp. 571-574, July 18-20, 2009. Article (CrossRef 

Link) 

[10] R. Szerwinski, T. Guneysu, “Exploiting the Power of GPUs for Asymmetric Cryptography,” in 

Proc. of 10th Int. Workshop on Cryptographic Hardware and Embedded Systems (CHESS 2008), 

pp. 79-99, August 10-13, 2008. Article (CrossRef Link) 

[11] A.D. Biagio, A. Barenghi, G. Agosta, G. Pelosi, “Design of a Parallel AES for Graphics Hardware 

using the CUDA Framework,” in Proc. of IEEE Int. Symposium on Parallel & Distributed 

Processing (IPDPS 2009), pp.1-8, May 23-29, 2009. Article (CrossRef Link)  

[12] J. Yang, J. Goodman, “Symmetric Key Cryptography on Modern Graphics Hardware,” in Proc. of 

Advances in Cryptology (ASIACRYPT 2007), pp. 249-264, Dec. 2-6, 2007. Article (CrossRef Link) 

[13] Elcomsoft. http://www.elcomsoft.com/distributed_password_recovery.html   

[14] K. Jang, S. Han, S. Han, S. Moon, K. Park, “SSLShader: Cheap SSL Acceleration with 

Commodity Processors,” in Proc. of 8th USENIX Conference on Networked Systems Design and 

Implementation (NSDI’11), pp. 1-1, Mar. 30-Apr. 1, 2011.  Article (CrossRef Link)  

[15] S. Han, K. Jang, K. Park, S. Moon, “PacketShader: A GPU-Accelerated Software Router,” in Proc. 

of ACM SIGCOMM 2010 Conference on SIGGCOM, pp. 195-206, Aug. 30-Sep. 3, 2010. Article 

(CrossRef Link) 

[16] V. Garcia, E. Debreuve, F. Nielsen, M. Barlaud, “K-nearest neighbor search: Fast GPU-based 

implementations and application to high-dimensional feature matching,” in Proc. of 17th IEEE Int. 

Conference on Image Processing (ICIP 2010), pp. 3757-3760, Sep. 26-29, 2010. Article (CrossRef 

Link)  
[17] Y. Zhuge, Y. Cao, R.W. Miller, “GPU Accelerated Fuzzy Connected Image Segmentation by 

using CUDA,” in Proc. of Annual IEEE Int. Conference on Engineering in Medicine and Biology 

Society (EMBS 2009) , pp. 6241-6344, Sep. 3-6, 2009. Article (CrossRef Link) 

[18] Electronic Frontier Foundation. http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker   

[19] Electronic Frontier Foundation, “Cracking Des: Secrets of Encryption Research, Wiretap Politics 

& Chip Design,” 1st Edition, O'Reilly Media, 1998.  

[20] Copacobana. http://www.copacobana.org  

[21] Sciengines. http://www.sciengines.com  

[22]  T. Guneysu, T. Kasper, M. Novotny, C. Paar, A. Rupp, “Cryptanalysis with COPACOBANA,” 

IEEE Transactions on Computers, vol. 57, no. 11, pp. 1498-1513, Nov. 2008. Article (CrossRef 

Link) 

[23] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, D. Shippy, “Introduction to the 

Cell Multiprocessor,” IBM Journal of Research and Development, vol. 49, no. 4.5, pp. 589-604, 

July 2005. Article (CrossRef Link)  

[24]  N. Breeze, “Crackstation : Optimized Cryptography on the Playstation3,” 2007.  

[25]  Tableau TACC 1441, http://www.tableau.com 

[26] Nvidia Corp., “NVIDIA CUDA Compute Unified Device Architecture Programming Guide,” 

Version 2.0, 2008. 

[27] Geforce 9800 GTX, http://www.nvidia.com/object/product_geforce_9800m_gtx_us.html 

[28] Tesla S1070, http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_S1070_US_Jun08_NV_LR_ 

Final.pdf 

[29] R. Basu, S. Ganguly, S. Maitra, G. Paul, “A Complete Characterization of the Evolution of RC4 

Pseudo Random Generation Algorithm,” Journal of Mathematical Cryptology, vol. 2, no. 3, pp. 

257-289, Oct. 2008. Article (CrossRef Link)  
[30] R.L. Rivest, “The MD5 Message-Digest Algorithm,” Internet RFC 1321, April, 1992. 

[31] Tesla C1060, http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C1060_US_Jan10_lores_r1. 

pdf 

[32] Picasso system. http://www.ksc.re.kr/eng 

[33] Quadro FX-5600. http://www.nvidia.com/object/quadro_fx_5600_4600.html  

 

http://dx.doi.org/10.1109/ICASID.2009.5277017
http://dx.doi.org/10.1109/ICASID.2009.5277017
http://dx.doi.org/doi:10.1007/978-3-540-85053-3_6
http://dx.doi.org/doi:10.1109/IPDPS.2009.5161242
http://dx.doi.org/doi:10.1007/978-3-540-76900-2_15
http://shader.kaist.edu/sslshader/sslshader.pdf
http://dx.doi.org/doi:10.1145/1851182.1851207
http://dx.doi.org/doi:10.1145/1851182.1851207
http://dx.doi.org/10.1109/ICIP.2010.5654017
http://dx.doi.org/10.1109/ICIP.2010.5654017
http://dx.doi.org/10.1109/IEMBS.2009.5333158
http://dx.doi.org/10.1109/TC.2008.80
http://dx.doi.org/10.1109/TC.2008.80
http://dx.doi.org/10.1147/rd.494.0589
http://dx.doi.org/10.1515/JMC.2008.012


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November 2011                                2253 

 
 

 

Keonwoo Kim received his B.S. and M.S. degrees in electronic engineering in 1999 

and 2001, respectively, from Kyungpook National University in Korea. He is currently a 

senior member of engineering staff at Cryptography Research team in ETRI, Korea. His 

main research interests are security in mobile communication, cryptography, digital 

forensics, and data visualization. 

 
 

 

Sang-Su Lee received his B.S. and M.S. degrees in electronic engineering in 1999 and 

2001, respectively, from Kyungpook National University, Korea. He has been a staff of 

engineering of Network Security Dep. in ETRI, Korea since 2001. His research interests 

include digital security, optical security, and digital forensics. 

 
 

 

Dowon Hong received his B.S., M.S. and Ph.D. degrees in mathematics from Korea 

University, Seoul, Korea on 1994, 1996, and 2000. He is currently a principal member of 

engineering staff and the team leader of Cryptography Research team at the Electronics 

and Telecommunication Research Institute, Korea where his research interests are 

broadly in the area of applied cryptography, networks security, and digital forensics. 

 

Jae-Cheol Ryou is a professor at Department of Computer Engineering in Chungnam 

National University in Korea. He is also the director of the Internet Intrusion Response 

Technology Research Center (IIRTRC), Chungnam National University, Korea. He 

received the B.S. degree in Industrial Engineering from Hanyang University in 1985, the 

M.S. degree in Computer Science from Iowa State University in 1988, and the Ph.D. 

degree in Electrical Engineering and Computer Science from Northwestern University in 

1990. His research interests are Internet Security and Electronic Payment Systems. 

 


