DOI QR코드

DOI QR Code

Degassing of Molten A328 Aluminum Alloy by Ultrasonic Vibration

초음파 진동에 의한 A328 알루미늄 합금 용탕의 탈가스

  • Received : 2011.10.06
  • Accepted : 2011.10.27
  • Published : 2011.12.31

Abstract

A328 alloy is an attractive candidate for recycle-friendly aluminum alloy in the recycling of automotive components. In this study, A328 alloy melt was degassed by ultrasonic vibration and the effect of treatment time on the density, fluidity and mechanical properties was investigated. Experimental results reveal that a constant value of density can be reached after less than 180 seconds of ultrasonic treatment time, but the density decreased when the treatment time was 300 seconds. Ti which was dissolved from the horn during ultrasonic treatment reduced the fluidity of melt. After degassing by ultrasonic vibration for 180 seconds, tensile strength increased from 201MPa to 250MPa, and elongation increased from 2.38% to 3.50%, however, further treatment deteriorated the mechanical properties.

Keywords

References

  1. Ducker Worldwide, Aluminum Association Auto and Light Truck Group 2009 Update on Aluminum Content in North American Light Vehicles, (2009) http://aluminumintransportation.org/downloads/Ducker International Final Report 2009-II.pdf
  2. H. Xu, X. Jian, T. T. Meek and Han Q: Mater. Lett. "Degassing of molten aluminum A356 alloy using ultrasonic vibration", 58 (2004) 3669-3673 https://doi.org/10.1016/j.matlet.2004.02.055
  3. H. Xu, T. T. Meek and Q. Han: Mater. Lett. "Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy", 61 (2007) 1246-1250 https://doi.org/10.1016/j.matlet.2006.07.012
  4. H. Xu, Q. Han and T. T. Meek: Mater. Sci. Eng. A "Effects of ultrasonic vibration on degassing of aluminum alloys", 473 (2008) 96-104 https://doi.org/10.1016/j.msea.2007.04.040
  5. A. Das and H. R. Kotadia: Materials Chemistry and Physics "Effect of high intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy", 125 (2011) 853-859 https://doi.org/10.1016/j.matchemphys.2010.09.035
  6. G. I. Eskin: Ultrasonics Sonochemistry "Cavitation Mechanism of Ultrasonic Melt Degassing", 2(2) (1995) 137-141 https://doi.org/10.1016/1350-4177(95)00020-7
  7. ASM International, Metals Handbook, vol. 15 (1988)
  8. O. V. Abramov: Ultrasound in Liquid and Solid Metals, CRC Press, London, 1994, pp 91
  9. G. I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach, Amsterdam, 1998, pp 87
  10. I. G. Brodova, P. S. Popel and G. I. Eskin: Liquid Metal Processing, Taylor and Francis, New York, 2002, pp 201
  11. K. R. Ravi, R. M. Pillai, K. R. Amaranathan, B. C. Pai and M. Chakraborty: J Alloys Compd "Fluidity of aluminum alloys and composites: a review", 456 (2008) 201-210 https://doi.org/10.1016/j.jallcom.2007.02.038
  12. M. C. Flemings, E. Niiyama and H. F. Taylor: AFS Trans. 69 (1961) 625-635
  13. J. M. Kim and C. R. Loper Jr.: AFS Trans. 103 (1985) 521-529
  14. Y. D. Kwon and Z. H. Lee: Mater. Sci. Eng. A "The effect of grain refining and oxide inclusion on the fluidity of Al-4.5Cu-0.6Mn and A356 alloys", 360 (2003) 372-376 https://doi.org/10.1016/S0921-5093(03)00504-5