DOI QR코드

DOI QR Code

Theoretical Study of Phosphoryl Transfer Reactions

  • Received : 2010.11.25
  • Accepted : 2010.12.19
  • Published : 2011.03.20

Abstract

The energetics and transition state (TS) structures of the reactions of six substrates, $R_1R_2P$(=O or S)Cl-type where $R_1=R_2$=Me and/or MeO, with ammonia in acetonitrile are theoretically investigated at the level of CPCM-MP2/6-31+G(d) and CPCM-MP2/6-311+G(3df,2p). The degrees of distortion of TS from the ideal trigonal bipyramidal pentacoordinate, ${\Delta}{{\delta}}_{{\neq}b}$ for a backside and ${\Delta}{{\delta}}_{{\neq}f}$ for a frontside attack, are calculated. The results of calculation suggest that the feasibility of a frontside attack for P=S is greater than that for P=O system when the two ligands, $R_1$ and $R_2$, becomes larger. The experimental and calculated results of anilinolyses of $R_1R_2P$(=O or S)Cl-type show the consistent tendencies.

Keywords

References

  1. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.;Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  2. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002,67, 2215. https://doi.org/10.1021/jo0162742
  3. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  4. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  5. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley: New York, 1986; Chap. 4.
  6. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.;Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  7. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W.Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  8. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  9. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  10. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  11. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  12. Dey, N. K.; Hoque,M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem.2008, 21, 544. https://doi.org/10.1002/poc.1314
  13. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
  14. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.;Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  15. Dey,N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30,975. https://doi.org/10.5012/bkcs.2009.30.4.975
  16. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.;Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  17. Dey, N. K.; Lee,H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
  18. Dey, N. K.;Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g
  19. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12. https://doi.org/10.1021/jo990671j
  20. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc.2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135
  21. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007,28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  22. Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H.W. Bull. Korean Chem. Soc. 2008, 29, 851. https://doi.org/10.5012/bkcs.2008.29.4.851
  23. Lumbiny, B. J.;Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc.2008, 29, 1769. https://doi.org/10.5012/bkcs.2008.29.9.1769
  24. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee,H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
  25. Dey, N. K.; Kim,C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 3856. https://doi.org/10.5012/bkcs.2010.31.12.3856
  26. Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem.DOI.10.1002/poc.1788.
  27. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. https://doi.org/10.1021/jp9716997
  28. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003, 24, 669. https://doi.org/10.1002/jcc.10189
  29. Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287. https://doi.org/10.1002/9780470171950.ch6
  30. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477. https://doi.org/10.1021/ja964217y
  31. Omakor, J. E.; Onyido, I.; vanLoon, G.W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324.
  32. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003,125, 7178. https://doi.org/10.1021/ja035167h
  33. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A.C. J. Am. Chem. Soc. 2005, 127, 7703. 324.
  34. Thatcher, G. R. J.; Kluger, R. Adv. Phys. Org. Chem. 1989, 25, 99. https://doi.org/10.1016/S0065-3160(08)60019-2
  35. Lee, H. W.; Lee, J.W.; Koh, H. J.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 642
  36. Koh, H. J.;Kim, O. S.; Lee, H. W.; Lee, I. J. Phys. Org. Chem. 1997, 10, 725 https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<725::AID-POC943>3.0.CO;2-X
  37. Chang, S.; Koh, H. J.; Lee,B. S.; Lee, I. J. Org. Chem. 1995, 60, 7760 https://doi.org/10.1021/jo00129a016
  38. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper and Row: New York, 1987; p 239
  39. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
  40. Melander, L., Jr.; Saunders, W. H. Reaction Rates of Isotopic Molecules; Wiley-Interscience: New York, 1980.
  41. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  42. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  43. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529

Cited by

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
  3. Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
  4. Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
  5. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  6. Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
  7. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  8. Kinetics and Mechanism of the Pyridinolysis of Diethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1042
  9. Cleaving paraoxon with hydroxylamine: Ammonium oxide isomer favors a Frontside attack mechanism pp.08943230, 2018, https://doi.org/10.1002/poc.3866
  10. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3947
  11. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  12. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4304
  13. Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1997
  14. Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1138
  15. Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1375
  16. Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2306
  17. Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
  18. Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2628
  19. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
  20. Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3355
  21. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  22. Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
  23. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.1055
  24. Kinetics and Mechanism of the Pyridinolysis of Dimethyl Isothiocyanophosphate in Acetonitrile vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2260
  25. Pyridinolysis of Phenyl N-Phenyl Phosphoramidochloridate in Acetonitrile vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3437
  26. Kinetics and Mechanism of the Anilinolysis of Aryl N,N-Dimethyl Phosphoroamidochloridates in Acetonitrile vol.35, pp.3, 2011, https://doi.org/10.5012/bkcs.2014.35.3.753