DOI QR코드

DOI QR Code

Deficiency of $Foxp3^+$ Regulatory T Cells Exacerbates Autoimmune Arthritis by Altering the Synovial Proportions of $CD4^+$ T Cells and Dendritic Cells

  • Jang, Eun-Kyeong (Institute of Biomedical Sciences, College of Medicine, Hanyang University) ;
  • Cho, Mi-La (Institute of Biomedical Institutes, The Catholic University of Korea) ;
  • Oh, Hye-Joa (Institute of Biomedical Institutes, The Catholic University of Korea) ;
  • Youn, Jee-Hee (Institute of Biomedical Sciences, College of Medicine, Hanyang University)
  • 투고 : 2011.10.07
  • 심사 : 2011.10.17
  • 발행 : 2011.10.31

초록

Background: $CD4^+Fop3^+$ regulatory T cells (Tregs) are needed to maintain peripheral tolerance, but their role in the development of autoimmune arthritis is still debated. The present study was undertaken to investigate the mechanism by which Tregs influence autoimmune arthritis, using a mouse model entitled K/BxN. Methods: We generated Treg-deficient K/BxNsf mice by congenically crossing K/BxN mice with Foxp3 mutant scurfy mice. The arthritic symptoms of the mice were clinically and histopathologically examined. The proportions and activation of $CD4^+$ T cells and/or dendritic cells were assessed in the spleens, draining lymph nodes and synovial tissue of these mice. Results: K/BxNsf mice exhibited earlier onset and more aggressive progression of arthritis than their K/BxN littermates. In particular, bone destruction associated with the influx of numerous RANKL+ cells into synovia was very prominent. They also contained more memory phenotype $CD4^+$ T cells, more Th1 and Th2 cells, and fewer Th17 cells than their control counterparts. Plasmacytoid dendritic cells expressing high levels of CD86 and CD40 were elevated in the K/BxNsf synovia. Conclusion: We conclude that Tregs oppose the progression of arthritis by inhibiting the development of $RANKL^+$ cells, homeostatically proliferating $CD4^+$ T cells, Th1, Th2 and mature plasmacytoid dendritic cells, and by inhibiting their influx into joints.

키워드

참고문헌

  1. Shevach EM: CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2;389-400, 2002. https://doi.org/10.1038/nri821
  2. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 299; 1057-1061, 2003.
  3. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27;20-21, 2001. https://doi.org/10.1038/83713
  4. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI: Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54;92-99, 2005. https://doi.org/10.2337/diabetes.54.1.92
  5. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA: Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199;971-979, 2004. https://doi.org/10.1084/jem.20031579
  6. Crispin JC, Martinez A, Alcocer-Varela J: Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun 21;273-276, 2003. https://doi.org/10.1016/S0896-8411(03)00121-5
  7. Sakaguchi S: Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6;345-352, 2005.
  8. Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV: Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172;4676-4680, 2004. https://doi.org/10.4049/jimmunol.172.8.4676
  9. Mottonen M, Heikkinen J, Mustonen L, Isomaki P, Luukkainen R, Lassila O: CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol 140;360-367, 2005. https://doi.org/10.1111/j.1365-2249.2005.02754.x
  10. Chen Z, Herman AE, Matos M, Mathis D, Benoist C: Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 202;1387-1397, 2005. https://doi.org/10.1084/jem.20051409
  11. Lee DM, Weinblatt ME: Rheumatoid arthritis. Lancet 358; 903-911, 2001. https://doi.org/10.1016/S0140-6736(01)06075-5
  12. Morgan ME, Sutmuller RP, Witteveen HJ, van Duivenvoorde LM, Zanelli E, Melief CJ, Snijders A, Offringa R, de Vries RR, Toes RE: CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum 48; 1452-1460, 2003. https://doi.org/10.1002/art.11063
  13. Bardos T, Czipri M, Vermes C, Finnegan A, Mikecz K, Zhang J: CD4+CD25+ immunoregulatory T cells may not be involved in controlling autoimmune arthritis. Arthritis Res Ther 5; R106-R113, 2003. https://doi.org/10.1186/ar624
  14. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS: CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 50;2775-2785, 2004. https://doi.org/10.1002/art.20499
  15. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, Mauri C: Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 200;277-285, 2004. https://doi.org/10.1084/jem.20040165
  16. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, Mauri C: Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 200;277-285, 2004. https://doi.org/10.1084/jem.20040165
  17. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D: Organ-specific disease provoked by systemic autoimmunity. Cell 87;811-822, 1996. https://doi.org/10.1016/S0092-8674(00)81989-3
  18. Kang SM, Jang E, Paik DJ, Jang YJ, Youn J: CD4+CD25+ regulatory T cells selectively diminish systemic autoreactivity in arthritic K/BxN mice. Mol Cells 25;64-69, 2008.
  19. Lee EK, Kang SM, Paik DJ, Kim JM, Youn J: Essential roles of Toll-like receptor-4 signaling in arthritis induced by type II collagen antibody and LPS. Int Immunol 17;325-333, 2005. https://doi.org/10.1093/intimm/dxh212
  20. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J: RANK is essential for osteoclast and lymph node development. Genes Dev 13;2412-2424, 1999. https://doi.org/10.1101/gad.13.18.2412
  21. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6;1123-1132, 2005. https://doi.org/10.1038/ni1254
  22. Cao D, Malmstrom V, Baecher-Allan C, Hafler D, Klareskog L, Trollmo C: Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 33;215-223, 2003. https://doi.org/10.1002/immu.200390024
  23. Green EA, Choi Y, Flavell RA: Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16;183-191, 2002. https://doi.org/10.1016/S1074-7613(02)00279-0
  24. Makita S, Kanai T, Oshima S, Uraushihara K, Totsuka T, Sawada T, Nakamura T, Koganei K, Fukushima T, Watanabe M: CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells. J Immunol 173;3119-3130, 2004. https://doi.org/10.4049/jimmunol.173.5.3119
  25. Lee I, Wang L, Wells AD, Dorf ME, Ozkaynak E, Hancock WW: Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J Exp Med 201;1037-1044, 2005. https://doi.org/10.1084/jem.20041709
  26. Li Q, Xu B, Michie SA, Rubins KH, Schreriber RD, McDevitt HO: Interferon-alpha initiates type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A 105;12439-12444, 2008. https://doi.org/10.1073/pnas.0806439105
  27. Lande R, Gafa V, Serafini B, Giacomini E, Visconti A, Remoli ME, Severa M, Parmentier M, Ristori G, Salvetti M, Aloisi F, Coccia EM: Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J Neuropathol Exp Neurol 67;388-401, 2008. https://doi.org/10.1097/NEN.0b013e31816fc975
  28. Gottenberg JE, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T, Jacques S, Ba N, Ittah M, Lepajolec C, Labetoulle M, Ardizzone M, Sibilia J, Fournier C, Chiocchia G, Mariette X: Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren's syndrome. Proc Natl Acad Sci U S A 103;2770-2775, 2006. https://doi.org/10.1073/pnas.0510837103
  29. Lande R, Giacomini E, Serafini B, Rosicarelli B, Sebastiani GD, Minisola G, Tarantino U, Riccieri V, Valesini G, Coccia EM: Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J Immunol 173;2815-2824, 2004. https://doi.org/10.4049/jimmunol.173.4.2815
  30. Penna G, Vulcano M, Roncari A, Facchetti F, Sozzani S, Adorini L: Cutting edge: differential chemokine production by myeloid and plasmacytoid dendritic cells. J Immunol 169; 6673-6676, 2002. https://doi.org/10.4049/jimmunol.169.12.6673
  31. Krug A, Uppaluri R, Facchetti F, Dorner BG, Sheehan KC, Schreiber RD, Cella M, Colonna M: IFN-producing cells respond to CXCR3 ligands in the presence of CXCL12 and secrete inflammatory chemokines upon activation. J Immunol 169;6079-6083, 2002. https://doi.org/10.4049/jimmunol.169.11.6079
  32. Vanbervliet B, Bendriss-Vermare N, Massacrier C, Homey B, de Bouteiller O, Briere F, Trinchieri G, Caux C: The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. J Exp Med 198;823-830, 2003. https://doi.org/10.1084/jem.20020437

피인용 문헌

  1. Pathways for Bone Loss in Inflammatory Disease vol.10, pp.2, 2011, https://doi.org/10.1007/s11914-012-0104-5
  2. Regulation of gene expression of CD4+ T lymphocyte differentiation transcription factors by galectin-3 in vitro vol.47, pp.6, 2013, https://doi.org/10.1134/s0026893313060150