DOI QR코드

DOI QR Code

Multiple Damage Detection of Pipeline Structures Using Statistical Pattern Recognition of Self-sensed Guided Waves

자가 계측 유도 초음파의 통계적 패턴인식을 이용하는 배관 구조물의 복합 손상 진단 기법

  • 박승희 (성균관대학교 사회환경시스템공학과) ;
  • 김동진 (성균관대학교 u-City 공학과) ;
  • 이창길 (성균관대학교 건설환경시스템공학과)
  • Received : 2010.12.17
  • Accepted : 2011.01.16
  • Published : 2011.05.30

Abstract

There have been increased economic and societal demands to continuously monitor the integrity and long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. However, it is very difficult to continuously monitor the structural condition of the pipeline structures because those are placed underground and connected each other complexly, although pipeline structures are core underground infrastructures which transport primary sources. Moreover, damage can occur at several scales from micro-cracking to buckling or loose bolts in the pipeline structures. In this study, guided wave measurement can be achieved with a self-sensing circuit using a piezoelectric active sensor. In this self sensing system, a specific frequency-induced structural wavelet response is obtained from the self-sensed guided wave measurement. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented using the damage indices extracted from the guided wave features. Different types of structural damage artificially inflicted on a pipeline system were investigated to verify the effectiveness of the proposed SHM approach.

최근 사회 기반 시설물에서 구조물의 안전성 및 적정 성능 수준을 확보하기 위하여 구조물의 결함 빛 노후화에 의한 성능 저하 등을 상시적으로 모니터링하기 위한 관심이 높아지고 있다. 이 중 배관 구조물은 국가 주요 자원의 수송을 책임지는 핵심 사회 기반 시설물임에도 불구하고 지중에 매립된다는 위치적 특성 상 상시적으로 구조물의 상태를 모니터링하기는 매우 어렵다. 또한 배관 구조물에서는 내부 미세 균열에서부터 국부 좌굴, 볼트 풀림, 피로 균열 등과 같이 다양한 형태의 손상이 복합적으로 발생 가능하다. 따라서 본 연구에서는 이러한 복합 손상을 효율적으로 진단하기 위하여 압전센서를 이용한 자가 계측 회로 기반의 유도 초음파 계측 시스템을 복합 손상 진단에 적용하였다. 유도 초음파 자가 계측으로부터 특정 중심 주파수에 해당하는 구조물의 웨이블렛 응답을 계측한다. 복합 손상을 유형별로 분류하기 위하여 유도 초음파 계측으로부터 추출한 특성을 이용하여 손상지수를 계산하고 이를 지도학습 기반 패턴인식 기법에 적용한다. 제안된 기법의 적용성 검토를 위하여 배관 구조물에 인위적으로 다중 손상을 생성시켜 시험을 수행하였다.

Keywords

References

  1. Achenbach, J. D., Wave Propagation in Elastic Solids, North Holland, Amsterdam, 1973, pp.202-258.
  2. ANSI / IEEE Std. 176, IEEE Standard on piezoelectricity, The Institute of Electrical and electronics Engineers, Inc., NewJersey, 1987, pp.1-11.
  3. Giurgiutiu, V., Zagrai, A. and Bao, J. J., "Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring", Structural Health Monitoring, Vol. 1, No. 1, 2002, pp.41-61. https://doi.org/10.1177/147592170200100104
  4. Kim, S. B. and Sohn, H., "Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials", Smart Materials and Structures, Vol. 16, No. 6, 2007, pp.2375-2387. https://doi.org/10.1088/0964-1726/16/6/042
  5. Kim, J-W., Lee C. and Park S., "Real-time Health Monitoring of Pipeline Structures using Piezoelectric Guided Wave Propagation", Advanced Science Letters, In press.
  6. Lamb, H., "On waves in an elastic plate", Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, Vol. 93, No. 648, 1917, pp.114-128. https://doi.org/10.1098/rspa.1917.0008
  7. Lee, S. J. and Sohn, H., "Active self-sensing scheme development for structural health monitoring", Smart Materials and Structures, Vol. 15, No. 6, 2006, pp.1734-1746. https://doi.org/10.1088/0964-1726/15/6/028
  8. Lemistre, M. and Balageas, D., "Structural health monitoring system based on diffracted Lamb wave analysis by multi resolution processing", Smart Materials and Structures, Vol. 10, No. 3, 2001, pp.504-511. https://doi.org/10.1088/0964-1726/10/3/312
  9. Liang, C., Sun, F. P. and Rogers, C. A., "Coupled electro-mechanical analysis of adaptive material systems - determination of the actuator power consumption and system energy transfer", Journal of Intelligent Material Systems and Structures, Vol. 5, No. 1, 1994. pp.12-20. https://doi.org/10.1177/1045389X9400500102
  10. Mita, A. and Taniguchi, R., "Active Damage Detection Method Using Support Vector Machine and Amplitude Modulation", Proceedings of 11th International Symposium on Smart Structures and Materials, SPIE5391, SanDiego, 2004, pp.21-29.
  11. Na, W.-B. and Kundu, T., "Underwater Pipeline Inspection Using Guided Waves", Journal of Pressure Vessel Technology, Transactions of the ASME, Vol. 124, No. 2, 2002, pp.196-200. https://doi.org/10.1115/1.1398292
  12. Nayfeh, A. H., "Wave Propagation in Layered Anisotropic Media With Applications to Composites, North Holland, Amsterdam, 1995, pp.103-112
  13. Ravet, F., Zou, L., Bao, X., Ozbakkaloglu, T., Saatcioglu, M. and Zhou, J., "Distributed brillouin sensor for structural health monitoring", Canadian Journal of Civil Engineering, Vol. 34, No. 3, 2007, pp.291-297 https://doi.org/10.1139/l06-131
  14. Sun, F. P., Liang, C. and Rogers, C. A., "Experimental modal testing using piezoceramic patches as collocated sensors-actuators", Proceedings of the 1994 SEM Spring Conference and Exhibits, Society for Experimental Mechanics, Baltimore, MI, 1994.
  15. Sun, F. P., Chaudhry, Z., Rogers, C. A. and Majmundar, M., "Automated real-time structure health monitoring via signature pattern recognition", Proceedings of SPIE North American Conference on Smart Structures and Materials, SPIE, SanDiego, 1995, pp.236-247.
  16. Vapnik, V. N., The Nature of Statistical Learning Theory, Springer, New York, 1995, pp.138-167.

Cited by

  1. 매립 파이프 및 공동의 패턴 템플레이트 구축 vol.21, pp.4, 2011, https://doi.org/10.11112/jksmi.2017.21.4.080