Verticilloside, a New Daucosteryl Derivative from the Seeds of Malva verticillata

  • Received : 2011.12.01
  • Accepted : 2011.12.22
  • Published : 2011.12.30

Abstract

A new daucosteryl derivative, verticilloside (1), was isolated from the seeds of Malva verticillata L. (Malvaceae). The structure was determined to be 3-O-[${\beta}$-D-(6'-linoleoyl)glucopyranosyl]-${\beta}$-sitosterol based on spectroscopic analyses ($^1H$ and $^{13}C$-NMR, DEPT, COSY, HMQC, and HMBC) and chemical reactions.

Keywords

References

  1. Ahmed, W., Ahmed, Z., and Malik, A., Stigmasteryl Galactoside from Rhynchosia minima, Phytochemistry 31, 4038-4039 (1992). https://doi.org/10.1016/S0031-9422(00)97583-6
  2. De Bruyn, A. and Van Loo, J., The identification by $^1H$- and $^{13}C$-n.m.r. spectroscopy of sucrose, 1-kestose, and neokestose in mixtures present in plant extracts. Carbohydr. Res. 211, 131-136 (1991). https://doi.org/10.1016/0008-6215(91)84151-4
  3. Gonda, R., Tomoda, M., Shimizu, N., and Kanari, M., Characterization of an acidic polysaccharide from the seeds of Malva verticillata stimulating the phagocytic activity of cells of the RES. Plana. Med. 56, 73-76 (1990). https://doi.org/10.1055/s-2006-960888
  4. Jeong, Y.-T. and Song, C.-H. Antidiabetic activities of extract from Malva verticillata seed via the activation of AMP-activated protein kinase. J Microbiol Biotechnol 21, 921-929 (2011). https://doi.org/10.4014/jmb.1104.04015
  5. Kim, J.A., Yang, S.Y., Koo, J.-E., Koh, Y.-S., and Kim, Y.H., Lupane-type triterpenoids from the steamed leaves of Acanthopanax koreanum and their inhibitory effects on the LPS-stimulated proinflammatory cytokine production in bone marrow-derived dendritic cells. Bioorg. Med. Chem. Lett 20, 6703-6707 (2010). https://doi.org/10.1016/j.bmcl.2010.09.001
  6. Kovganko, N.V., Kashkan, Zh. N., Borisov, E.V., and Batura, E.V., $^{13}C$ NMR spectra of $\beta$-sitosterol derivatives with oxidized rings A and B. Chem. Nat. Comp. 35, 646-649 (1999). https://doi.org/10.1007/BF02236293
  7. Sultana, N. and Afolayan, A.J., A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides. Nat. Prod. Res. 21, 889-896 (2007). https://doi.org/10.1080/14786410601129606
  8. Tomoda, M., Asahara, H., Gonda, R., and Takada, K., Constituents of the seed of Malva verticillata. VIII. Smith degradation of MVS-VI, the major acidic polysaccharide, and anti-complementary activity of products. Chem. Pharm. Bull. 40, 2219-2221 (1992). https://doi.org/10.1248/cpb.40.2219
  9. Vlahov, G., $^{13}C$ nuclear magnetic resonance spectroscopy to determine fatty acid distribution in triacylglycerols of vegetable oils with "High - Low Oleic Acid" and "High Linolenic Acid". Open. Magn. Reson. J. 2, 8-19 (2009). https://doi.org/10.2174/1874769800902010008
  10. Voutquenne, L., Lavaud, C., Massiot, G., Sevenet, T., and Hadi, H.A., Cytotoxic polyisoprenes and glycosides of long-chain fatty alcohols from Dimocarpus fumatus. Phytochemistry 50, 63-69 (1999). https://doi.org/10.1016/S0031-9422(98)00483-X
  11. Wu, Q., Chen, Z.-C., Lu, D.-S., and Lin, X.-F., Chemo-enzymatic synthesis of raffinose-branched polyelectrolytes and self-assembly application in microcapsules. Macromol. Biosci. 6, 78-83 (2006). https://doi.org/10.1002/mabi.200500191