DOI QR코드

DOI QR Code

Butyl고무와 EPDM고무 블렌드의 경화특성, 물리적 성질 및 내오존성

Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends

  • 박찬영 (부경대학교 공과대학 고분자공학과) ;
  • 황영배 ((주)넥센 기술연구소)
  • 투고 : 2011.10.24
  • 심사 : 2011.11.11
  • 발행 : 2011.12.31

초록

일반적으로 butyl 고무(IIR : isobutylene isoprene rubber)는 우수한 내기체투과성 및 저반발 탄성체로서 우수한 충격흡수성을 갖는다. 본 실험에서는 butyl고무에 EPDM(ethylene propylene diene monomer)을 기계적 혼련법으로 blend 혼련물을 제조하여 이들의 가교 거동, 물리적 성질 및 내오존성 등을 측정하였다. EPDM 고무량이 증가할수록 최적 가황시간이 단축되는 경향을 보였다. 기체투과속도 테스트에 의한 내기체투과성 측정 결과 butyl고무량이 50 wt% 이상일 경우에는 기체투과도가 현저히 감소하였다. 한편 butyl rubber/EPDM 블렌드의 경우에 EPDM의 함량이 25 wt.% 이상 함유될 경우 내오존성이 향상되어 50 pphm, $50^{\circ}C$, 120시간 조건에서도 아무런 표면변화가 없었다.

In general, butyl rubber(IIR : isobutylene isoprene rubber) has excellent gas permeability resistance and impact absorbance property as low resilience elastomer. In this experiment butyl rubber blends with EPDM(ethylene propylene diene monomer) were prepared by mechanical mixing method. Curing behavior, physical properties and ozone resistance etc. were subsequently examined. Measurement results of gas transmission rate test shows that butyl rubber contents above 50 wt% showed significant decrease in gas permeability resistant property. However, in butyl rubber/EPDM blend, EPDM contents above 25 wt% indicates no surface change due to improvement of ozone resistance under the condition of 50 pphm, $50^{\circ}C$, 120 hrs.

키워드

참고문헌

  1. J. K. Kallitsis and N. K. Kalfoglou, "Compatibility of epoxidized natural rubber with thermoplastic and thermosetting resins", J. Appl. Polym. Sci., 37, 453 (1989). https://doi.org/10.1002/app.1989.070370212
  2. P. Sae-oui, C. Sirisinha, U. Thepsuwan, and P. Thapthong, "Influence of accelerator type on properties of NR/EPDM blends", Polymer Testing, 26, 1062 (2007). https://doi.org/10.1016/j.polymertesting.2007.07.004
  3. C. W. Nah and B. Y. Sohn, "Mechanical Properties of Natural Rubber/Acrylonitrile Butadiene Rubber Blends and Their Adhesion Behavior with Steel Cords", Elastomer, 36, 111 (2001).
  4. T. Marinovic, M. Sustar, A. Pertot, and Z. Susteric, "Properties and morphology of crosslinked butadiene-acrylonitrile rubber and polysulphide rubber (NBR/TM) blends", Polymer International, 45, 77 (1998). https://doi.org/10.1002/(SICI)1097-0126(199801)45:1<77::AID-PI889>3.0.CO;2-#
  5. S. H. Botros and Abdel-Nour, "Preparation and characterization of butyl/NBR vulcanizates", Polymer Degradation and Stability, 62, 479 (1998). https://doi.org/10.1016/S0141-3910(98)00031-7
  6. S. Chakrit, S. B. Limcharoen, and J. Thunyarittikorn,, "Relationships among blending conditions, size of dispersed phase, and oil resistance in natural rubber and nitrile rubber blends", J. Appl. Poly. Sci., 82, 1232 (2001). https://doi.org/10.1002/app.1957
  7. B. Jurkowska, K. Nadolny et al., "Influence of fluorine-containing lubricant on properties of NR/BR rubber", European Polymer Journal, 42, 1676 (2006). https://doi.org/10.1016/j.eurpolymj.2006.01.005
  8. H. Ismail and S. Suzaimah, "Styrene butadiene rubber/epoxidized natural rubber blends:dynamic properties, curing characteristics and swelling studies", Polymer Testing, 19, 879 (2000). https://doi.org/10.1016/S0142-9418(99)00058-6
  9. Bauer R. F. and E. A. Dudley, "Compatibilization of Rubber Blends through Phase Interaction", Rubber Chem. Technol., 50, 35 (1977). https://doi.org/10.5254/1.3535131
  10. W. S. Kim, W. D. Kim, C. S. Woo, and S. S. Choi, "Effect of NR/BR Blends ratio and Oil Content on the Mechanical Properties of Rubber Isolator at Low Temperature", Elastomer, 39, 95 (2004).
  11. Brown R. P., "Physical Testing of Rubber", 2nd ed. Elsevier Appl. Sci., London & New York, 291 (1986).
  12. D. J. Buckley and S. B. Robinson, "Ozone attack on rubber vulcanizates", J. Polym. Sci., 19, 145 (1956). https://doi.org/10.1002/pol.1956.120199115