모양분류와 컬러정보를 이용한 내용기반 약 영상 검색 시스템

A Contents-based Drug Image Retrieval System Using Shape Classification and Color Information

  • 투고 : 2011.08.13
  • 심사 : 2011.11.07
  • 발행 : 2011.12.31

초록

본 논문에서는 약 영상의 모양 분류와 컬러정보를 이용한 새로운 내용기반 약 영상 검색 시스템을 제안한다. 내용기반 약 영상검색 시스템의 구현에 있어 주요 문제점은 유사한 모양과 색상을 지닌 영상이 너무 많이 존재한다는 것이며, 단순히 약 영상의 한 가지 특성에 의해서는 특정한 약을 확인하기 어렵다는 것이다. 이러한 약 영상 구분의 문제를 해결하기 위하여 본 논문에서는 약 영상의 모양과 색상에 근거한 복합적인 영상검색 방법을 제시하였다. 제안된 방법의 첫 단계에서는 약 영상을 모양에 의해 분류한 후 두 번째 단계에서 분류된 영상들 가운데 약 영상의 색상 정보를 이용하여 약 영상을 검색하였다. 모양 분류를 위하여 대상 약의 경계선으로부터 추출된 고유의 모양신호를 추출하여 사용하였다. 모양신호에 의해 분류된 영상으로부터 색조(hue)와 채도(saturation)정보를 이용하여 데이터베이스 영상으로부터 질의 영상과 유사도 가 높은 영상을 검색 추출하였다. 제안된 시스템은 약 영상의 시각적 특성에 의해 노인과 같은 특정한 사용자들이 영상을 쉽게 검색할 수 있도록 개발되었다. 실험을 통해 제안된 자동 시스템이 약 영상을 인식하고 검색하는데 신뢰성 있고 편리하다는 것을 입증 하였다.

In this paper, we present a novel approach for contents-based medication image retrieval from a medication image database using the shape classification and color information of the medication. One major problem in developing a contents-based drug image retrieval system is there are too many similar images in shape and color and it makes difficult to identify any specific medication by a single feature of the drug image. To resolve such difficulty in identifying images, we propose a hybrid approach to retrieve a medication image based on shape and color features of the medication. In the first phase of the proposed method we classify the medications by shape of the images. In the second phase, we identify them by color matching between a query image and preclassified images in the first phase. For the shape classification, the shape signature, which is unique shape descriptor of the medication, is extracted from the boundary of the medication. Once images are classified by the shape signature, Hue and Saturation(HS) color model is used to retrieve a most similarly matched medication image from the classified database images with the query image. The proposed system is designed and developed especially for specific population- seniors to browse medication images by using visual information of the medication in a feasible fashion. The experiment shows the proposed automatic image retrieval system is reliable and convenient to identify the medication images.

키워드

참고문헌

  1. Pill identifier-Drug.com. [Online] Available: http://www.drugs.com
  2. Bit Drug info. [Online] Available: http://www.druginfo.co.kr
  3. Sung, T.Y.L., Hung, F.H., and Chiu, H.W, "Implementation of An Integrated Drug Information System for Inpatients to Reduce Medication Errors in Administrating Stage," Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 743-746, 2008.
  4. Lisa M. Given, Stan Ruecker etal., "Inclusive Interface Design for Seniors: Image-Browsing for a Health Information Context," Journal of American Society for Information Science and Technology, Vol.58, No.11, pp. 1610-1617, 2007. https://doi.org/10.1002/asi.20645
  5. Geradts, Z., Bijhold, J., "Content based information retrieval in forensic image databases," Journal of forensic sciences Vol. 47, No. 2, pp. 285-292, 2002.
  6. U.S National Library of Medicine. [Online] Available: http://www.nlm.nih.gov/
  7. WII Lab. University of Colorado. [Online] Available: http://wii.cs.colorado.edu/wiilab/NLM-Meds/
  8. H. Muller, N. Michoux, D. Bandon, and A Geissbuhler, "A review of content-based image retrieval systems in medical applications--clinical benefits and future directions," International Journal of Medical Informatics Vol. 73, pp. 1-23, 2004. https://doi.org/10.1016/j.ijmedinf.2003.11.024
  9. R. Datta, D. Joshi, J. Li and J. Z. Wang, "Image Retrieval: Ideas, Influences and Trends of the New Age," ACM Computing Survey, Vol. 40, No.2, Article 5, pp.1-60, 2008.
  10. Chen, W., Chao, P.J., Lin, H.L., "Drug Identification by Network Adaptive Content- Based Image Retrieval," The Journal of Health Science Vol. 9, No. 2, pp. 133-145, 2007.
  11. R. C Chen, C. T Pao, Y. H Chen and J. C Jian, "Automatic Drug Image Identification System Based on Multiple Image Features," Computational Collective Intelligence. Technologies and Applications, Second International Conference, ICCCI 2010, pp. 249-256, 2010.
  12. Spiclin, Z.; Likar, B.; Pernuss, F, "Real-Time Print Localization on Pharmaceutical Capsules for Automatic Visual Inspection," Proceedings of the 2010 IEEE International Conference on Industrial Technology, pp. 279-284, 2010.
  13. Zeno Geradts, Huub Hardy, Anneke Poortman, and Jurrien Bijhold, "Evaluation of contents based image retrieval methods for database of logos on drug tablets," Proceedings of SPIE, Vol.4232, pp.553-562, 2001.
  14. Lee, Y.-B., Park, U., Jain, A. K., "Pill-id: Matching and retrieval of drug pill imprint images," Proceedings of the 20th International Conference on Pattern Recognition. pp. 2632-2635, 2010.
  15. M. K. Hu, "Visual Pattern recognition by moment invariants," IRE Transactions on Information Theory, Vol. 8, No. 2, pp. 66-70, 1962.
  16. G. Stockman, L. Shapiro, Computer Vision, Prentice Hall, 2001.
  17. S. Sural, G. Qian, S. Pramanik, "Segmentation and histogram generation using the HSV color space for image retrieval," Proceedings of International Conference on Image Processing (ICIP), pp. 589-592, 2002.