Alterations of Calcium-binding Protein Immunoreactivities in the Hippocampus Following Traumatic Brain Injury

외상성 뇌손상 후 해마내 칼슘결합단백질 면역반응의 변화

  • Oh, Yun-Jung (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Kim, Baek-Seon (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Park, Dae-Kyoon (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Park, Kyung-Ho (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Ko, Jeong-Sik (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University)
  • 오윤정 (순천향대학교 의과대학 해부학교실) ;
  • 김백선 (순천향대학교 의과대학 해부학교실) ;
  • 박대균 (순천향대학교 의과대학 해부학교실) ;
  • 박경호 (순천향대학교 의과대학 해부학교실) ;
  • 고정식 (순천향대학교 의과대학 해부학교실) ;
  • 김덕수 (순천향대학교 의과대학 해부학교실)
  • Received : 2011.09.27
  • Accepted : 2011.12.20
  • Published : 2011.12.31

Abstract

Traumatic brain injury (TBI) is one of the leading causes of death and disability in children and adults and is a major risk factor for the development of posttraumatic epilepsy (PTE). Recent studies have provided significant insight into the pathophysiological mechanisms underlying the development of epilepsy. Although the link between brain trauma and epilepsy is well recognized, the complex biological mechanisms that result in PTE following TBI have not been fully elucidated. Therefore, this study investigated in order to identify whether or not the abnormal expression of calcium-binding proteins in the lesioned hippocampus plays a role in neuronal damage by brain trauma and whether or not the expressions may change in the contralateral hippocampus during the adaptive stage as early time point following TBI. During early time point following TBI, both parvalbumin (PV) and calbindin D-28k (CB) immunoreactivities were decreased with in the lesioned hippocampus. However, these expressions were recovered to control levels as depend on time courses. On the other hand, PV immunoreactivity in contralateral hippocampus was transiently reduced as compared to the control levels, whereas CB expression was unchanged. These findings indicate that the alterations of the calcium-binding proteins, especially PV and CB, may contribute to the neuronal death and/or damage induced by abnormal inhibitory neurotransmission at early time period following brain trauma and the development of epileptogenesis in patients with traumatic brain injury.

외상성 뇌손상(traumatic brain injury, TBI)은 다양한 외부요인에 의해 나타나는 직접적인 뇌조직 손상으로, 변성된 뇌신경세포의 지연성 병태생리학적인 변화를 수반하는 질환으로 잘 알려져 있다. 이러한 뇌손상은 그 정도에 따라 인지기능저하 및 운동능력의 손상을 야기하는 것으로 알려져 있으며, 특히, 일부 환자에서는 뇌손상 후유증으로 회귀성 간질발작 증상이 나타나는 것으로 알려 있다. 외상성 뇌손상 후 간질발생기전에 대한 연구에서 GABAergic interneurons의 손상과 다양한 종류의 억제성 사이신경의 작용이 간질질환의 발병에 매우 중요한 역할을 하는 것으로 알려져 있다. 따라서, 본 연구에서는 외상성 뇌손상 후 초기단계에서 칼슘결합단백질이 발현되는 GABAergic interneurons의 면역반응성이 어떠한 변화를 나타내는지를 분석하고, 이와 같은 발현변화가 외상성 손상 후 간질발생 및 전파에 미치는 영향을 분석하여 이들 사이의 연관성을 규명하기 위하여 연구를 수행하였다. 연구결과 극저온으로 외상성 뇌손상을 주었을 때 극저온 손상에 노출된 대뇌의 해마에서 parvalbumin (PV) 및 calbindin D-28k (CB)와 같은 칼슘결합단백질의 발현이 시간경과에 따라 다양하게 변화되는 것을 확인 할 수 있었다. 극저온에 노출되어 손상을 받은 부위는 뇌손상 후 30분경에 대조군에 비해 PV 및 CB의 발현이 현저하게 감소하였으며, 이들에 면역반응성을 나타내는 신경세포의 숫자도 시간경과에 따라 감소하였으나, 시간이 경과함에 따라 정상수준으로 회복되었다. 그러나, 외상성 뇌손상에 노출되지 않은 반대측 해마에서는 CB의 면역반응성에는 특이한 변화가 없는 반면, PV의 발현은 뇌손상 후 1일 이후부터 대조군에 비해 특이하게 감소하였다. 따라서, 이 실험의 결과는 뇌손상후 해마에서 나타나는 칼슘결합단백질의 감소가 $GABA_A$ receptor를 통한 억제성신경전달의 감소에 관여하고, 이러한 작용에 의해 일시적으로 해마내 신경세포들의 과흥분성 신경전달이 증가하는 것으로 생각된다. 또한, 외상성 뇌손상에 노출되지 않은 반대측 해마에서 나타나는 PV 면역반응 신경세포의 감소는 외상성 뇌손상에 노출된 동측 해마에서 나타나는 칼슘결합단백질의 변화와 함께 외상성 뇌손상 후 간질발생에 중요한 역할을 할 것으로 생각된다.

Keywords

References

  1. Agrawal A, Timothy J, Pandit L, Manju M: Post-traumatic epilepsy: An overview. Clinical Neurology and Neurosurgery 108(5) : 433-439, 2006. https://doi.org/10.1016/j.clineuro.2005.09.001
  2. Andre V, Marescaux C, Nehlig A, Fritschy JM: Alterations of hippocampal GABAergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus 11 : 452-468, 2001. https://doi.org/10.1002/hipo.1060
  3. Andressen C, Blumcke J, Celio MR: Calcium-binding proteins; selective markers of nerve cells. Cell Tissue Res 271 : 181-208, 1993. https://doi.org/10.1007/BF00318606
  4. Babb TL, Pretorius JK, Kupfer WR, Crandall PH: Glutamate decarboxylase- immunorective neurons are preserved in human epileptic hippocampus. J Neurosci 9 : 2562-2574, 1989.
  5. Baimbridge KG, Miller JJ: Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res 245 : 223-229, 1982. https://doi.org/10.1016/0006-8993(82)90804-6
  6. Baimbridge KG, Celio MR, Rogers JH: Calcium-binding proteins in the nervous system. Trends Neurosci 15 : 303-308, 1992. https://doi.org/10.1016/0166-2236(92)90081-I
  7. Beau FE, Alger BE : Transient suppression of GABAA-receptormediated IPSPs after epileptiform burst discharges in CA1 pyramidal cells. J Neurophysiol 79 : 659-669, 1998. https://doi.org/10.1152/jn.1998.79.2.659
  8. Buckmaster PS, Jongen-Relo AL: Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainateinduced epileptic rats. J Neurosci 19 : 9519-9529, 1999.
  9. Bush PC, Prince DA, Miller KD: Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition; a model. J Neurophysiol 82 : 1748- 1758, 1999. https://doi.org/10.1152/jn.1999.82.4.1748
  10. Caveness WF: Epilepsy, a product of trauma in our time. Epilepsia 17 : 207-215, 1976. https://doi.org/10.1111/j.1528-1157.1976.tb03398.x
  11. Celio MR: Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35 : 375-475, 1990. https://doi.org/10.1016/0306-4522(90)90091-H
  12. Cossart R, Dinocourt C, Hirsch JC, Merchan-Perez A, De Felipe J, Ben-Ari Y, Esclapez M, Bernard C: Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 4 : 52-62, 2001. https://doi.org/10.1038/82900
  13. Coulter DA, Rafiq A, Shumate M, Gong QZ, DeLorenzo RJ, Lyeth BG: Brain injury-induced enhanced limbic epileptogenesis; anatomical and physiological parallels to an animal model of temporal lobe epilepsy. Epilepsy Res 26 : 81-91, 1996. https://doi.org/10.1016/S0920-1211(96)00044-7
  14. De Lanerolle NC, Kim JH, Robbins RJ, Spencer DD: Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495 : 387-395, 1989. https://doi.org/10.1016/0006-8993(89)90234-5
  15. Empson RM, Heinemann U: The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J Physiol 484 : 707-720, 1995. https://doi.org/10.1113/jphysiol.1995.sp020697
  16. Franck JE, Kunkel DD, Baskin DG, Schwartzkroin PA: Inhibition in kainate-lesioned hyperexcitable hippocampi; physiologic, autoradiographic, and immunocytochemical observations. J Neurosci 8 : 1991-2002, 1988.
  17. Fritschy JM, Kiener T, Bouilleret V, Loup F: GABAergic neurons and GABAA-receptors in temporal lobe epilepsy. Neurochem Int 34 : 435-445, 1999. https://doi.org/10.1016/S0197-0186(99)00040-6
  18. Gaetz M: The neurophysiology of brain injury. Clin Neurophysiol 115 : 4-18, 2004. https://doi.org/10.1016/S1388-2457(03)00258-X
  19. Gibson CJ, Meyer RC, Hamm RJ: Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-B receptor subunit expression in rat hippocampus. J Biomed Sci 17 : 38, 2010. https://doi.org/10.1186/1423-0127-17-38
  20. Giza CC, Maria NS, Hovda DA: N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma 23 : 950-961, 2006. https://doi.org/10.1089/neu.2006.23.950
  21. Golarai G, Greenwood AC, Feeney DM, Connor JA: Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 21 : 8523-8537, 2001.
  22. Gorter JA, van Vliet EA, Aronica E, Lopes da Silva FH: Progression of spontaneous seizures after status epilepticus is associated with mossy fiber sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 13 : 657-669, 2001.
  23. Graber KD, Prince DA: A critical period for prevention of posttraumatic neocortical hyperexcitability in rats. Ann Neurol 55 : 860- 870, 2004. https://doi.org/10.1002/ana.20124
  24. Graber KD, Prince DA: Chronic partial cortical isolation. In Pitkanen A, Schwartzkroin P, Moshe S (Eds) Models of seizures and epilepsy. Elsevier Academic Press, San Diego, pp. 477-493, 2006.
  25. Guerrini R: Idiopathic epilepsy and paroxysmal dyskinesia. Epilepsia 42(Suppl 3): 36-41, 2001. https://doi.org/10.1046/j.1528-1157.2001.0420s4036.x
  26. Gupta YK, Gupta M: Post traumatic epilepsy: A review of scientific evidence. Indian Journal of Physiology and Pharmacology 50(1) : 7-16, 2006.
  27. Hall ED, Bryant YD, Cho W, Sullivan PG: Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de Olmos silver and gluorejade staining methods. J Neurotrauma 25 : 235-247, 2008. https://doi.org/10.1089/neu.2007.0383
  28. Hunt RF, Scheff SW, Smith BN: Posttraumatic epilepsy after controlled cortical impackt injury in mice. Exp Neurol 215 : 243- 252, 2009. https://doi.org/10.1016/j.expneurol.2008.10.005
  29. Hwang IK, Nam YS, Chung DW, Lee HS, Yoon YS, Yoo KY, Kang TC, Lee IS, Won MH: Changes in the expression of calbindin D-28k in the gerbil hippocampus following seizure. Neurochem Int 44 : 145-152, 2004a. https://doi.org/10.1016/S0197-0186(03)00132-3
  30. Hwang IK, Park SK, An SJ, Woo KY, Kim DS, Jung JY, Won MH, Choi SY, Kwon OS, Kang TC: GABAA, not GABAB, receptor shows subunit- and spatial-specific alterations in the hippocampus of seizure prone gerbils. Brain Res 1003 : 98-107, 2004b. https://doi.org/10.1016/j.brainres.2003.12.026
  31. Isokawa M: Modulation of GABAA receptor-mediated inhibiton by postsynaptic calcium in epileptic hippocampal neurons. Brain Res 810 : 241-250, 1998. https://doi.org/10.1016/S0006-8993(98)00922-6
  32. Jacobs KM, Parada I, Prince DA: Enhanced c-fos staining in two post-lesional models of cortical hyperexcitability; freeze lesions and partial cortical isolations. Epilepsia 42(Suppl 7) : 221, 2001.
  33. Jande SS, Maler L, Lawson DE: Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature 294 : 765-767, 1981. https://doi.org/10.1038/294765a0
  34. Jones RS, Lambert JD: Entorhinal-hippocampal connections; a speculative view of their function. Trend Neurosci 16 : 58-64, 1990a.
  35. Jones RS, Lambert JD: Synchronous discharges in the rat entorhinal cortex in vitro; site of initiation and the role of excitatory amino acid receptors. Neuroscience 34 : 657-670, 1990b. https://doi.org/10.1016/0306-4522(90)90172-Z
  36. Kang TC, Park SK, Bahn JH, Jeon SG, Jo SM, Cho SW, Choi SY, Won MH: The alteration of gamma-aminobutyric acid-transaminase expression in the gerbil hippocampus induced by seizure. Neurochem Int 38 : 609-614, 2001a. https://doi.org/10.1016/S0197-0186(01)00002-X
  37. Kang TC, Kim HS, Seo MO, Choi SY, Kwon OS, Baek NI, Lee HY, Won MH : The temporal alteration of GAD67/GAD65 ratio in the gerbil hippocampal complex following seizure. Brain Res 920 : 159-169, 2001b. https://doi.org/10.1016/S0006-8993(01)03056-6
  38. Kang TC, An SJ, Park SK, Hwang IK, Bae JC, Won MH: Changed vesicular GABA transporter immunoreactivity in the gerbil hippocampus following spontaneous seizure and vagabatrin administration. Neurosci Lett 335 : 207-211, 2003a. https://doi.org/10.1016/S0304-3940(02)01166-7
  39. Kang TC, Park SK, Hwang IK, An SJ, Choi SY, Kwon OS, Baek NI, Lee HY, Won MH: The altered expression of GABA shunt enzymes in the gerbil hippocampus before and after seizure genKang TC, Park SK, Hwang IK, An SJ, Choi SY, Kwon OS, Baek NI, Lee HY, Won MH: The altered expression of GABA shunt enzymes in the gerbil hippocampus before and after seizure generation. Neurochem Int 42 : 239-249, 2003b. https://doi.org/10.1016/S0197-0186(02)00079-7
  40. Kang TC, Park SK, Hwang IK, An SJ, Won MH: Altered Na+-K+ ATPase immunoreactivity within GABAergic neurons in the gerbil hippocampal complex induced by spontaneous seizure and vigabatrin treatment. Neurochem Int 45(1) : 179-87, 2004. https://doi.org/10.1016/j.neuint.2003.10.008
  41. Kharlamove EA, Lepsveridze E, Meparishvili M, Solomonia RO, Lu B, Miller ER, Kelly KM, Mtchedlishvili ZM : Alterations of GABAA and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res 95(1-2) : 20-34, 2011. https://doi.org/10.1016/j.eplepsyres.2011.02.008
  42. Kim DS, Kwak SE, Kim JE, Won MH, Choi HC, Son HK, Kwon OS, Kim YI, Choi SY, Kang TC: Bilateral enhancement of excitation via up-regulation of vesicular glutamate transporter subtype 1, not subtype 2, immunoreactivity in the unilateral hypoxic epilepsy model. Brain Res 1055(1-2) : 122-130, 2005. https://doi.org/10.1016/j.brainres.2005.06.081
  43. Kim DS, Kim JE, Kwak SE, Won MH, Kang TC: Seizure activity affects neuroglial Kv1 channel immunoreactivities in the gerbil hippocampus. Brain Res. 1151 : 172-87, 2007a. https://doi.org/10.1016/j.brainres.2007.03.017
  44. Kim DS, Kim JE, Kwak SE, Choi HC, Song HK, Kimg YI, Choi SY, Kang TC: Up-regulated astroglial TWIK-related acid-sensitive K+ channel-1 (TASK-1) in the hippocampus of seizuresensitive gerbils: a target of anti-epileptic drugs. Brain Res. 1185 : 346-58, 2007b. https://doi.org/10.1016/j.brainres.2007.09.043
  45. Kim DS, Kim JE, Kwak SE, Choi KC, Kim DW, Kwon OS, Choi SY, Kang TC: Spatiotemporal characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpineinduced status epilepticus. J Comp Neurol 511(5) : 581-98, 2008. https://doi.org/10.1002/cne.21851
  46. King CE, Canty AJ, Vickers JC: Alterations in neurofilaments associated with reactive brain changes and axonal sprouting following acute physical injury to the rat neocortex. Neuropathol Appl Neurobiol 27 : 115-126, 2001. https://doi.org/10.1046/j.1365-2990.2001.00317.x
  47. Kumar A, Zou L, Yuan X, Long Y, Yang K: N-methyl-D-aspartate receptors; transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J Neurosci Res 67 : 781- 786, 2002. https://doi.org/10.1002/jnr.10181
  48. Kwak SE, Kim JE, Kim DS, Jung JY, Won MH, Kwon OS, Choi SY, Kang TC: Effects of GABAergic transmissions on the immunoreactivities of calcium binding proteins in the gerbil hippocampus. J Comp Neurol 485 : 153-164, 2005. https://doi.org/10.1002/cne.20482
  49. Magloczky Z, Halasz P, Vajda J, Czirjak S, Freund TF: Loss of calbinding- D28k immunoreactivity from dentate granule cells in human temporal lobe epilepsy. Neuroscience 76 : 377-385, 1997. https://doi.org/10.1016/S0306-4522(96)00440-X
  50. Magloczky Z, Wittner L, Borhegyi z, Halasz P, Vajda J, Czirjak S, Freund TF: Changes in the distribution and connectivity of interneurons in the pileptic human dentate gyrus. Neuroscience 96 : 7-25, 2000. https://doi.org/10.1016/S0306-4522(99)00474-1
  51. Mani J, Barry E: Posttraumatic epilepsy. in Wyllie E, Gupta A, Lachhwani DK: The Treatment of Epilepsy: Principles and Practice. Hagerstown, MD: Lippincott Williams & Wilkins. pp. 521- 524, 2006.
  52. Masukawa LM, Higashima M, Kim JH, Spencer DD: Epileptiform discharges evoked in hippocampal brain slices from epileptic patients. Brain Res 493 : 168-174, 1989. https://doi.org/10.1016/0006-8993(89)91012-3
  53. Meldrum B: Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Res 50(1-2) : 33-40, 2002. https://doi.org/10.1016/S0920-1211(02)00066-9
  54. Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H: Abnormal intracellular$ Ca^{2+}$ homeostasis and disease. Cell Calcium 28(1) : 1-21, 2000. https://doi.org/10.1054/ceca.2000.0131
  55. Neumann-Haefelin T, Hagemann G, Witte OW: Cellular correlates of neuronal hyperexcitability in the vicinity of photochemically induced cortical infarcts in rats in vitro. Neurosci Lett 193 : 101- 104, 1995. https://doi.org/10.1016/0304-3940(95)11677-O
  56. Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F: Epilepsy following cortical injury; cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 50 : 30-40, 2009.
  57. Ratzliff AH, Howard AL, Santhakumar V, Osapay I, Soltesz I: Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus; implications for epileptogenesis. J Neurosci 24 : 2259-2269, 2004. https://doi.org/10.1523/JNEUROSCI.5191-03.2004
  58. Reeves TM, Lyeth BG, Povlishock JT: Long-term potentiation deficits and excitability changes following traumatic brain injury. Exp Brain Res 106 : 248-256, 1995.
  59. Rogawski MA: KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 23(9) : 393-8, 2000. https://doi.org/10.1016/S0166-2236(00)01629-5
  60. Rowley HL, Martin KF, Marsden CA: Decreased GABA release following tonic-clonic seizures is associasted with an increase in extracellular glutamate in rat hippocampus in vivo. Neuroscience 68 : 415-422, 1995. https://doi.org/10.1016/0306-4522(95)00159-G
  61. Rozycka A, Trzeciak WH: Genetic basis of autosomal dominant nocturnal frontal lobe epilepsy. J Appl Genet 44(2) : 197-207, 2003.
  62. Santhakumar V, Bender R, Frotscher M, Ross ST, Hollrigel GS, Toth Z, Soltesz I : Granule cell hyperexcitability in the early posttraumatic rat dentate gyrus; the 'irritable mossy cell' hypothesis. J Physiol 524 : 117-134, 2000. https://doi.org/10.1111/j.1469-7793.2000.00117.x
  63. Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I: Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 50 : 708-717, 2001. https://doi.org/10.1002/ana.1230
  64. Sayin U, Usting S, Hagen J, Rutecki P, Sutula T: Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. J Neurosci 23 : 2759- 2768, 2003.
  65. Schumann J, Alexandrovich GA, Biegon A, Yaka R: Inhibition of NR2B phosphorylation restores alterations in NMDA receptor expression and improves functional recovery following traumatic brain injury in mice. J Neurotrauma 25 : 945-957, 2008. https://doi.org/10.1089/neu.2008.0521
  66. Sloviter RS: Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235 : 73-76, 1987. https://doi.org/10.1126/science.2879352
  67. Sloviter RS: Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation; GABA-mediated mechanisms that regulate excitability in vivo.Hippocampus 1 : 31-40, 1991a. https://doi.org/10.1002/hipo.450010105
  68. Sloviter RS: Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat; the "dormant basket cell" hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1 : 41-66, 1991b. https://doi.org/10.1002/hipo.450010106
  69. Sutch RJ, Davies CC, Bowery NG: GABA release and uptake measured in crude synaptosomes from genetic absence epilepsy rats from Strasbourg (GAERS). Neurochem Int 34 : 415-425, 1999. https://doi.org/10.1016/S0197-0186(99)00046-7
  70. Toth K, Freund TF: Calbindin D28k-containing nonpyramidal cells in the rat hippocampus; their immunoreactivity for GABA and projection to the medial septum. Neuroscience 49 : 793-805, 1992. https://doi.org/10.1016/0306-4522(92)90357-8
  71. Weiss GH, Feeney DM, Caveness WF, Dillon D, Kistler JP, Mohr JP: Prognostic factors for the occurrence of post-traumatic epilepsy. Arch Neurol 40 : 7-10, 1983.
  72. Weiss GH, Salazar AM, Vance SC, Grafman JH, Jabbari B: Predicting posttraumatic epilepsy in penetrating head injury. Arch Neurol 43 : 771-773, 1986. https://doi.org/10.1001/archneur.1986.00520080019013
  73. Williamson A, Patrylo PR, Spencer DD: Decrease in inhibition in dentate granule cells from patients with medial temporal lobe epilepsy. Ann Neurol 45 : 92-99, 1999. https://doi.org/10.1002/1531-8249(199901)45:1<92::AID-ART15>3.0.CO;2-N
  74. Willmore LJ, Ueda Y: Posttraumatic epilepsy: hemorrhage, free radicals and the molecular regulation of glutamate. Neurochem Res 34 : 688-697, 2009. https://doi.org/10.1007/s11064-008-9841-3
  75. Witte OW, Bidmon HJ, Schiene K, Redecker C, Hagemann G: Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab 20(8) : 1149-65, 2000. https://doi.org/10.1097/00004647-200008000-00001
  76. Yang L, Afroz S, Michelson HB, Goodman JH, Valsamis HA, Ling DS: Spontaneous epileptiform activity in rat neocortex after controlled cortical impact injury. J Neurotrauma 27 : 1541-1548, 2010. https://doi.org/10.1089/neu.2009.1244
  77. Yang Q, Wang S, Hamberger A, Haglid KG: Plasticity of granule cell-mossy fiber system following kainic acid induced seizures; an immunochtochemical study on neurofilament proteins. Neurosci Res 26 : 57-64, 1996.
  78. Zhu WJ, Roper SN: Reduced inhibition in an animal model of cortical dysplasia. J Neurosci 20 : 8925-8931, 2000.