DOI QR코드

DOI QR Code

호장으로부터 분리한 Polydatin의 미백 및 주름억제 효능에 대한 연구

The Effects of Polydatin Isolated from Polygonum cuspidatum on Melanogenesis and Wrinkle Formation

  • 진무현 ((주)LG생활건강 기술연구원) ;
  • 정의택 ((주)LG생활건강 기술연구원) ;
  • 김미선 ((주)LG생활건강 기술연구원) ;
  • 송혜진 ((주)LG생활건강 기술연구원) ;
  • 곽택종 ((주)LG생활건강 기술연구원) ;
  • 박선규 ((주)LG생활건강 기술연구원) ;
  • 이상민 ((주)LG생활건강 기술연구원)
  • Jin, Mu-Hyun (LG Household and Health Care Co. Ltd., Research Park) ;
  • Jeong, Eui-Taek (LG Household and Health Care Co. Ltd., Research Park) ;
  • Kim, Mi-Sun (LG Household and Health Care Co. Ltd., Research Park) ;
  • Song, Hye-Jin (LG Household and Health Care Co. Ltd., Research Park) ;
  • Kwak, Taek-jong (LG Household and Health Care Co. Ltd., Research Park) ;
  • Park, Sun-Gyoo (LG Household and Health Care Co. Ltd., Research Park) ;
  • Lee, Sang-Min (LG Household and Health Care Co. Ltd., Research Park)
  • 투고 : 2011.10.04
  • 심사 : 2011.11.02
  • 발행 : 2011.12.30

초록

5,4'-dihydroxystilbene-3-O-D-glucopyranoside (polydatin)는 호장(Polygonum cuspidatum)에 존재하는 stilbenes류의 하나로 지금까지 피부에서의 효능이 잘 알려지지 않았다. 우리는 호장으로부터 Polydatin을 분리하여 얻었으며, 피부유래의 멜라노사이트와 fibroblast를 이용하여 효능을 검증하였다. 실험결과 멜라노사이트에서 polydatin은 타이로시네이즈 활성과 멜라닌 생성을 억제하였고, 멜라닌 생합성 과정에 관여하는 타이로시네이즈와 전사인자인 microphthalmia-associated transcription factor (MITF)의 발현을 억제하는 것을 확인하였다. 미백효과가 확인된 polydatin에 대하여 human fibroblast를 대상으로 type I procollagen 생합성에 미치는 영향을 분석한 결과 polydatin은 농도 의존적 으로 콜라젠 합성을 촉진함을 알 수 있었다. 또한 polydatin의 피부에서의 효능을 검증하기 위해 인체효력시험을 통해 주름개선과 미백개선 효능을 검증하였으며 이를 통해 주름과 미백기능에 있어 유의한 효과를 확인하였다. 이상의 결과로부터 polydatin은 안전한 피부 미백 개선제 및 주름개선제로 사용될 수 있는 후보물질임을 제안하며, 상업적으로 활용하기 위해 원료화를 성공하였다.

5,4'-dihydroxystilbene-3-O-${\beta}$-D-glucopyranoside (Polydatin) is one of the stilbenes found in Polygonum cuspidatum (P. cuspidatum), however, the effects of polydatin on skin biology remain to be elucidated. In this study, we obtained polydatin from P. cuspidatum and investigated the effects of polydatin in skin-derived melanocytes and fibroblasts. In melanocytes, polydatin inhibited not only the tyrosinase activity and melanin production but the expression of melanogenic factors, tyrosinase and microphthalmia-associated transcription factor (MITF). In addition, the level of type I procollagen in fibroblasts was analyzed, and polydatin significantly induced the production of type I procollagen in a dose-dependent manner. Finally we conformed that topical treatment of polydatin improved wrinkle and induced whitening of human skin in vivo. These data provide evidence that polydatin can be a potent candidate for the improvement of both skin wrinkle and whitening from the point of industry view.

키워드

참고문헌

  1. Y. M. Kim, J. Yun, C. K. Lee, H. Lee, K. R. Min, and Y. Kim, Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action, J. Biol. Chem., 277, 16340 (2002). https://doi.org/10.1074/jbc.M200678200
  2. K. Likhitwitayawid, Stilbenes with tyrosinase inhibitory activity, Current Science, 94, 44 (2008).
  3. K. Ohguchi, T. Tanaka, T. Ito, M. Iinuma, K. Matsumoto, Y. Akao, and Y. Nozawa, Inhibitory effects of resveratrol derivatives from dipterocarsvceae plants on tyrosinase activity, Biosci. Biotechnol. Biochem., 67, 1587 (2003). https://doi.org/10.1271/bbb.67.1587
  4. K. Ohguchi, T. Tanaka, T. Kido, K. Baba, M. Iinuma, K. Matsumoto, Y. Akao, and Y. Nozawa, Effects of hydroxystilbene derivatives on tyrosinase activity, Biochem. Biophys. Res. Commun., 307, 861 (2003). https://doi.org/10.1016/S0006-291X(03)01284-1
  5. B. A. Gilchrest and M. S. Eller, DNA photodamage stimulates melanogenesis and other photoprotective responses, J. Investig. Dermatol. Symp. Proc., 4, 35 (1999).
  6. R. E. Boissy, Melanosome transfer to and translocation in the keratinocyte, Exp. Dermatol., 12(2), 5 (2003). https://doi.org/10.1034/j.1600-0625.12.s2.1.x
  7. K. Okazaki, M. Uzuka, F. Morikawa, K. Toda, and M. Seiji, Transfer mechanism of melanosomes in epidermal cell culture, J. Invest. Dermatol., 67, 541 (1976). https://doi.org/10.1111/1523-1747.ep12664554
  8. V. J. Hearing and M. Jimenez, Analysis of mammalian pigmentation at the molecular level, Pigment Cell Res., 2, 75 (1989). https://doi.org/10.1111/j.1600-0749.1989.tb00166.x
  9. V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB J., 5, 2902 (1991).
  10. T. Kobayashi, W. D. Vieira, B. Potterf, C. Sakai, G. Imokawa, and V. J. Hearing, Modulation of melanogenic protein expression during the switch from euto pheomelanogenesis, J. Cell Sci., 108(6), 2301 (1995).
  11. T. Kobayashi, K. Urabe, A. Winder, C. Jimenez-Cervantes, G. Imokawa, T. Brewington, F. Solano, J. C. Garcia-Borron, and V. J. Hearing, Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis, EMBO J., 13, 5818 (1994).
  12. K. Yokoyama, H. Suzuki, K. Yasumoto, Y. Tomita, and S. Shibahara, Molecular cloning and functional analysis of a cDNA coding for human DOPA-chrome tautomerase/tyrosinase-related protein-2, Biochim. Biophys. Acta., 1217, 317 (1994). https://doi.org/10.1016/0167-4781(94)90292-5
  13. I. Aksan and C. R. Goding, Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo, Mol. Cell Biol., 18, 6930 (1998). https://doi.org/10.1128/MCB.18.12.6930
  14. C. A. Hodgkinson, K. J. Moore, A. Nakayama, E. Steingrimsson, N. G. Copeland, N. A. Jenkins, and H. Arnheiter, Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein, Cell, 74, 395 (1993). https://doi.org/10.1016/0092-8674(93)90429-T
  15. E. Steingrimsson, K. J. Moore, M. L. Lamoreux, A. R. Ferre-D'Amare, S. K. Burley, D. C. Zimring, L. C. Skow, C. A. Hodgkinson, H. Arnheiter, N. G. Copeland, and N. A. Jenkins, Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences, Nat. Genet., 8, 256 (1994). https://doi.org/10.1038/ng1194-256
  16. H. R. Widlund and D. E. Fisher, Microphthalamiaassociated transcription factor: a critical regulator of pigment cell development and survival, Oncogene, 22, 3035 (2003). https://doi.org/10.1038/sj.onc.1206443
  17. N. J. Bentley, T. Eisen, and C. R. Goding, Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator, Mol. Cell Biol., 14, 7996 (1994). https://doi.org/10.1128/MCB.14.12.7996
  18. C. Bertolotto, P. Abbe, T. J. Hemesath, K. Bille, D. E. Fisher, J. P. Ortonne, and R. Ballotti, Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes, J. Cell Biol., 142, 827 (1998). https://doi.org/10.1083/jcb.142.3.827
  19. C. Levy, M. Khaled, and D. E. Fisher, MITF: master regulator of melanocyte development and melanoma oncogene, Trends Mol. Med., 12, 406 (2006). https://doi.org/10.1016/j.molmed.2006.07.008
  20. K. Yasumoto, K. Yokoyama, K. Takahashi, Y. Tomita, and S. Shibahara, Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes, J. Biol. Chem., 272, 503 (1997). https://doi.org/10.1074/jbc.272.1.503
  21. U. Yavuzer, E. Keenan, P. Lowings, J. Vachtenheim, G. Currie, and C. R. Goding, The microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription, Oncogene, 10, 123 (1995).
  22. S. P. Jerome, L. Gabrielle, and F. Raul, Identification of collagen fibrils in scleroderma skin, J. Invest. Dermatol., 90(1), 48 (1998).
  23. K. Balin and A. M. Kligman, Aging and skin, Raven press, New York (1989).
  24. M. El-Domyati, S. Attia, F. Saleh, D. Brown, D. E. Birk, F. Gasparro, H. Ahmad, and J. Uitto, Intrinsic aging vs. photoaging : a comparative histopathological, immunohistochemical, and ultrastructural study of skin, Exp. Dermatol., 11(5), 398 (2002). https://doi.org/10.1034/j.1600-0625.2002.110502.x
  25. M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B: Biology, 63(1), 41 (2001). https://doi.org/10.1016/S1011-1344(01)00201-9
  26. G. S. Jayatilake, H. Jayasuriya, E. S. Lee, N. M. Koonchanok, R. L. Geahlen, C. L. Ashendel, J. L. McLaughlin, and C. J. Chang, Kinase inhibitors from Polygonum cuspidatum, J. Nat. Prod., 56, 1805 (1993). https://doi.org/10.1021/np50100a021
  27. P. W. Teguo, A. Decendit, J. Vercauteren, G. Deffieux, and J. M. Merillon, Trans-resveratrol-3-O-$\beta$-Glucoside (piceid) in cell suspension cultures of Vitis vinifera, Phytochemistry, 42, 1591 (1996). https://doi.org/10.1016/0031-9422(96)00203-8
  28. D. C. Bennett, P. J. Cooper, and I. R. Hart, A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth, Int. J. Cancer, 39, 414 (1987). https://doi.org/10.1002/ijc.2910390324
  29. V. M. Virador, N. Kobayashi, J. Matsunaga, and V. J. Hearing, A standardized protocol for assessing regulators of pigmentation, Anal. Biochem., 270, 207 (1999). https://doi.org/10.1006/abio.1999.4090
  30. Y. L. Leu, T. L. Hwang, J. W. Hu, and J. Y. Fang, Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use, Phytother. Res., 22, 552 (2008). https://doi.org/10.1002/ptr.2324
  31. C. Bertolotto, R. Busca, P. Abbe, K. Bille, E. Aberdam, J. P. Ortonne, and R. Ballotti, Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia, Mol. Cell Biol., 18, 694 (1998). https://doi.org/10.1128/MCB.18.2.694
  32. C. Bertolotto, K. Bille, J. P. Ortonne, and R. Ballotti, In B16 melanoma cells, the inhibition of melanogenesis by TPA results from PKC activation and diminution of microphthalmia binding to the M-box of the tyrosinase promoter, Oncogene, 16, 1665 (1998). https://doi.org/10.1038/sj.onc.1201685
  33. D. Fang, T. Kute, and V. Setaluri, Regulation of tyrosinase- related protein-2 (TYRP2) in human melanocytes: relationship to growth and morphology, Pigment Cell Res., 14, 132 (2001). https://doi.org/10.1034/j.1600-0749.2001.140209.x