참고문헌
- Y. M. Kim, J. Yun, C. K. Lee, H. Lee, K. R. Min, and Y. Kim, Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action, J. Biol. Chem., 277, 16340 (2002). https://doi.org/10.1074/jbc.M200678200
- K. Likhitwitayawid, Stilbenes with tyrosinase inhibitory activity, Current Science, 94, 44 (2008).
- K. Ohguchi, T. Tanaka, T. Ito, M. Iinuma, K. Matsumoto, Y. Akao, and Y. Nozawa, Inhibitory effects of resveratrol derivatives from dipterocarsvceae plants on tyrosinase activity, Biosci. Biotechnol. Biochem., 67, 1587 (2003). https://doi.org/10.1271/bbb.67.1587
- K. Ohguchi, T. Tanaka, T. Kido, K. Baba, M. Iinuma, K. Matsumoto, Y. Akao, and Y. Nozawa, Effects of hydroxystilbene derivatives on tyrosinase activity, Biochem. Biophys. Res. Commun., 307, 861 (2003). https://doi.org/10.1016/S0006-291X(03)01284-1
- B. A. Gilchrest and M. S. Eller, DNA photodamage stimulates melanogenesis and other photoprotective responses, J. Investig. Dermatol. Symp. Proc., 4, 35 (1999).
- R. E. Boissy, Melanosome transfer to and translocation in the keratinocyte, Exp. Dermatol., 12(2), 5 (2003). https://doi.org/10.1034/j.1600-0625.12.s2.1.x
- K. Okazaki, M. Uzuka, F. Morikawa, K. Toda, and M. Seiji, Transfer mechanism of melanosomes in epidermal cell culture, J. Invest. Dermatol., 67, 541 (1976). https://doi.org/10.1111/1523-1747.ep12664554
- V. J. Hearing and M. Jimenez, Analysis of mammalian pigmentation at the molecular level, Pigment Cell Res., 2, 75 (1989). https://doi.org/10.1111/j.1600-0749.1989.tb00166.x
- V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB J., 5, 2902 (1991).
- T. Kobayashi, W. D. Vieira, B. Potterf, C. Sakai, G. Imokawa, and V. J. Hearing, Modulation of melanogenic protein expression during the switch from euto pheomelanogenesis, J. Cell Sci., 108(6), 2301 (1995).
- T. Kobayashi, K. Urabe, A. Winder, C. Jimenez-Cervantes, G. Imokawa, T. Brewington, F. Solano, J. C. Garcia-Borron, and V. J. Hearing, Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis, EMBO J., 13, 5818 (1994).
- K. Yokoyama, H. Suzuki, K. Yasumoto, Y. Tomita, and S. Shibahara, Molecular cloning and functional analysis of a cDNA coding for human DOPA-chrome tautomerase/tyrosinase-related protein-2, Biochim. Biophys. Acta., 1217, 317 (1994). https://doi.org/10.1016/0167-4781(94)90292-5
- I. Aksan and C. R. Goding, Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo, Mol. Cell Biol., 18, 6930 (1998). https://doi.org/10.1128/MCB.18.12.6930
- C. A. Hodgkinson, K. J. Moore, A. Nakayama, E. Steingrimsson, N. G. Copeland, N. A. Jenkins, and H. Arnheiter, Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein, Cell, 74, 395 (1993). https://doi.org/10.1016/0092-8674(93)90429-T
- E. Steingrimsson, K. J. Moore, M. L. Lamoreux, A. R. Ferre-D'Amare, S. K. Burley, D. C. Zimring, L. C. Skow, C. A. Hodgkinson, H. Arnheiter, N. G. Copeland, and N. A. Jenkins, Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences, Nat. Genet., 8, 256 (1994). https://doi.org/10.1038/ng1194-256
- H. R. Widlund and D. E. Fisher, Microphthalamiaassociated transcription factor: a critical regulator of pigment cell development and survival, Oncogene, 22, 3035 (2003). https://doi.org/10.1038/sj.onc.1206443
- N. J. Bentley, T. Eisen, and C. R. Goding, Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator, Mol. Cell Biol., 14, 7996 (1994). https://doi.org/10.1128/MCB.14.12.7996
- C. Bertolotto, P. Abbe, T. J. Hemesath, K. Bille, D. E. Fisher, J. P. Ortonne, and R. Ballotti, Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes, J. Cell Biol., 142, 827 (1998). https://doi.org/10.1083/jcb.142.3.827
- C. Levy, M. Khaled, and D. E. Fisher, MITF: master regulator of melanocyte development and melanoma oncogene, Trends Mol. Med., 12, 406 (2006). https://doi.org/10.1016/j.molmed.2006.07.008
- K. Yasumoto, K. Yokoyama, K. Takahashi, Y. Tomita, and S. Shibahara, Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes, J. Biol. Chem., 272, 503 (1997). https://doi.org/10.1074/jbc.272.1.503
- U. Yavuzer, E. Keenan, P. Lowings, J. Vachtenheim, G. Currie, and C. R. Goding, The microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription, Oncogene, 10, 123 (1995).
- S. P. Jerome, L. Gabrielle, and F. Raul, Identification of collagen fibrils in scleroderma skin, J. Invest. Dermatol., 90(1), 48 (1998).
- K. Balin and A. M. Kligman, Aging and skin, Raven press, New York (1989).
- M. El-Domyati, S. Attia, F. Saleh, D. Brown, D. E. Birk, F. Gasparro, H. Ahmad, and J. Uitto, Intrinsic aging vs. photoaging : a comparative histopathological, immunohistochemical, and ultrastructural study of skin, Exp. Dermatol., 11(5), 398 (2002). https://doi.org/10.1034/j.1600-0625.2002.110502.x
- M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B: Biology, 63(1), 41 (2001). https://doi.org/10.1016/S1011-1344(01)00201-9
- G. S. Jayatilake, H. Jayasuriya, E. S. Lee, N. M. Koonchanok, R. L. Geahlen, C. L. Ashendel, J. L. McLaughlin, and C. J. Chang, Kinase inhibitors from Polygonum cuspidatum, J. Nat. Prod., 56, 1805 (1993). https://doi.org/10.1021/np50100a021
-
P. W. Teguo, A. Decendit, J. Vercauteren, G. Deffieux, and J. M. Merillon, Trans-resveratrol-3-O-
$\beta$ -Glucoside (piceid) in cell suspension cultures of Vitis vinifera, Phytochemistry, 42, 1591 (1996). https://doi.org/10.1016/0031-9422(96)00203-8 - D. C. Bennett, P. J. Cooper, and I. R. Hart, A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth, Int. J. Cancer, 39, 414 (1987). https://doi.org/10.1002/ijc.2910390324
- V. M. Virador, N. Kobayashi, J. Matsunaga, and V. J. Hearing, A standardized protocol for assessing regulators of pigmentation, Anal. Biochem., 270, 207 (1999). https://doi.org/10.1006/abio.1999.4090
- Y. L. Leu, T. L. Hwang, J. W. Hu, and J. Y. Fang, Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use, Phytother. Res., 22, 552 (2008). https://doi.org/10.1002/ptr.2324
- C. Bertolotto, R. Busca, P. Abbe, K. Bille, E. Aberdam, J. P. Ortonne, and R. Ballotti, Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia, Mol. Cell Biol., 18, 694 (1998). https://doi.org/10.1128/MCB.18.2.694
- C. Bertolotto, K. Bille, J. P. Ortonne, and R. Ballotti, In B16 melanoma cells, the inhibition of melanogenesis by TPA results from PKC activation and diminution of microphthalmia binding to the M-box of the tyrosinase promoter, Oncogene, 16, 1665 (1998). https://doi.org/10.1038/sj.onc.1201685
- D. Fang, T. Kute, and V. Setaluri, Regulation of tyrosinase- related protein-2 (TYRP2) in human melanocytes: relationship to growth and morphology, Pigment Cell Res., 14, 132 (2001). https://doi.org/10.1034/j.1600-0749.2001.140209.x