DOI QR코드

DOI QR Code

Reliability Analysis of Pile Type Quaywall Using Response Surface Method

응답면 기법을 이용한 잔교식 안벽의 신뢰성 해석

  • Lee, Sang-Geun (Dept. of Coastal Construction Engineering, Kunsan National University) ;
  • Kim, Dong-Hyawn (Dept. of Coastal Construction Engineering, Kunsan National University)
  • 이상근 (군산대학교 해양산업공학과 해양건설공학) ;
  • 김동현 (군산대학교 해양건설공학과)
  • Received : 2011.07.01
  • Accepted : 2011.11.25
  • Published : 2011.12.30

Abstract

Reliability analysis of pile type quaywalls were done by using response surface method. Pier structures have implicit form of limit state function since they are flexible in motion, which is different from gravity type quaywalls. To solve a reliability analysis problem with implicit limit state function, response surface method was applied. Reliability indices of structure under seismic load were found for pier structures Then, they were compared with those found by simulation method. In numerical analysis, both the inclined type and vertical type were analyzed.

응답면 기법을 사용하여 잔교식 안벽의 신뢰성 해석을 수행하였다. 잔교식 안벽은 중력식 안벽과 달리 상부가 강관파일에 의해 지지되는 유연구조물로 한계상태함수가 음함수로 존재한다. 따라서, 한계상태함수를 양함수로 근사하기 위해 응답면 기법을 사용하였다. 응답면 기법을 이용한 LevelII신뢰성해석 방법을 통해 지진하중에 의한 잔교식 안벽의 신뢰도지수를 계산하고, 중요도 추출법을 통해 검증하였다. 수치해석으로는 직항식, 사항식을 각각 해석하였다.

Keywords

References

  1. 김동현, 조홍연, 김두기, 조병일 (2007). 잔교식 안벽구조물의 확률론적 지진위험도해석, 한국해안해.양공학회지, 19(3), 237-243.
  2. 윤길림, 김동현, 김홍연 (2008). 안벽구조물의 신뢰성 해석, 한국해안.해양공학회지, 20(5), 498-509.
  3. 김동현, 윤길림 (2009). 부분안전계수를 이용한 케이슨식 안벽의 신뢰성 설계법, 한국해안.해양공학회지, 21(3), 224-229.
  4. 김동현, 윤길림, 케이슨식 안벽의 신뢰성해석을 위한 중요도추, 출법의 적용, 한국해양공학회논문집, 2009. 10. 21(5), 405-409.
  5. 양영순 등 (2002). 구조 신뢰성 공학, 서울대학교 출판부.
  6. 해양수산부 (2005). 항만 및 어항 설계기준.
  7. Nagao, T. and Fujimori, S. (2007). A study on the Estimation of Failure Probability of Pile-upported Wharves against a Level-One Earthquake Ground motion by using First-Order Second-Moment Method, TECHICAL NOTE of National Institute for Land and Infrastructure Management.
  8. Ang, A.H.S. and Tang, W.H. (1975). Probability conepts in engineering planning and design, vol. I & II, basic principles, John Wiley & Sons, Inc.11.
  9. Haldar, A. and Mahadevan, S. (2000). Reliability assessment using stochastic finite element analysis.
  10. Hasofer, A.M., Lind, NC. (1974). Exact and invariant second-moment code format, J. of Eng. Mech. Div. ASCE, 100, pp. 111-121.
  11. Rackwitz, R. Flessler, B. (1978). Structural reliability under combined random load sequences, Computers and Structures, 9(5), 484-494.

Cited by

  1. Seismic Reliability Analysis of Offshore Wind Turbine Support Structure vol.29, pp.5, 2015, https://doi.org/10.5574/KSOE.2015.29.5.342
  2. Dynamic reliability analysis of offshore wind turbine support structure under earthquake vol.21, pp.6, 2015, https://doi.org/10.12989/was.2015.21.6.609
  3. Seismic Reliability Analysis of Offshore Wind Turbine Jacket Structure Using Stress Limit State vol.30, pp.4, 2016, https://doi.org/10.5574/KSOE.2016.30.4.260
  4. Estimation of Seismic Fragility for Busan and Incheon Harbor Quay Walls vol.25, pp.6, 2013, https://doi.org/10.9765/KSCOE.2013.25.6.412