Abstract
One of the unsolved problems in Artificial Neural Networks is related to the capacity of a neural network. This paper presents a CoreNet which has a multi-leveled input and a multi-leveled output as a 2-layered artificial neural network. I have suggested an equation for calculating the capacity of the CoreNet, which has a p-leveled input and a q-leveled output, as $a_{p,q}=\frac{1}{2}p(p-1)q^2-\frac{1}{2}(p-2)(3p-1)q+(p-1)(p-2)$. With an odd value of p and an even value of q, (p-1)(p-2)(q-2)/2 needs to be subtracted further from the above equation. The simulation model 1(3)-1(6) has 3 levels of an input and 6 levels of an output with no hidden layer. The simulation result of this model gives, out of 216 possible functions, 80 convergences for the number of implementable function using the cot(x) input leveling method. I have also shown that, from the simulation result, the two diverged functions become implementable by precalculating the weight values. The simulation result and the precalculation of the weight values give the same result as the above equation in the total number of implementable functions.
인공신경망회로에서 아직도 안 풀리는 문제 중 하나는 회로의 처리용량에 관한 것이다. 본 논문은 인공신경망회로의 가장 기본이 되는 하나의 입력과 하나의 출력을 갖은 단층 다단 코어넷을 제안하고 그 처리 용량에 관한 수식을 유도하였다. 제안된 코어넷의 처리 용량으로 p단 입력과 q단 출력을 갖는 코어넷의 처리용량(구현 가능한 함수의 수)은 $a_{p,q}=\frac{1}{2}p(p-1)q^2-\frac{1}{2}(p-2)(3p-1)q+(p-1)(p-2)$ 이며, 입력단 p 값이 짝수이고, 출력단 q가 홀수값이면 추가로 (p-1)(p-2)(q-2)/2 만큼 감해진다. 입력 값으로 3단(level), 출력 값으로 6단을 갖는 1(3)-1(6) 모델을 시뮬레이션하여 분석한 결과, 총 216가지의 함수 조합에서 입력 레벨링 방법으로 cot(x)를 이용하여 82가지의 함수가 구현가능 함을 보였다. 이 모델의 시뮬레이션 결과 80개의 함수가 수렴(구현 가능)하였고, 나머지 수렴되지 않은 함수 중에서 2개의 함수는 무게값 공간에서 무게값 좌표를 미리 계산하여 구현 가능함으로 나와, 총 82개의 구현 가능한 함수가 있음을 보였으며, 이는 위 코어넷 처리용량에 의한 계산 값과 일치하였다.