DOI QR코드

DOI QR Code

고지방식이 공급에 따른 성장기 마우스의 골의 형태학적 미세구조와 염증지표 변화

Relationship between Bone Morphological Microstructure and Inflammatory Markers in Growing Mice Fed a High Fat Diet

  • 김미성 (원광대학교 식품영양학과) ;
  • 이현아 (원광대학교 동물자원개발연구센터) ;
  • 김옥진 (원광대학교 동물자원개발연구센터) ;
  • 손정민 (원광대학교 식품영양학과)
  • Kim, Mi-Sung (Department of Food and Nutrition, Wonkwang University) ;
  • Lee, Hyun-A (Center for Animal Resources Development, Wonkwang University) ;
  • Kim, Ok-Jin (Center for Animal Resources Development, Wonkwang University) ;
  • Sohn, Cheong-Min (Department of Food and Nutrition, Wonkwang University)
  • 투고 : 2011.10.18
  • 심사 : 2011.11.17
  • 발행 : 2011.12.31

초록

본 연구에서는 성장기 마우스 모델을 이용하여 고지방식 이를 제공한 후 이에 따른 염증지표와 골의 형태학적 미세구조의 변화를 살펴보았다. C57BL/6J 4주령 수컷 마우스를 난괴법에 의해 대조군 (n = 6)과 실험군 (n = 6)로 분류하여 대조군에는 10% Kcal fat 식이와 고지방식이군에는 45% Kcal fat 식이를 12주 동안 자유급식 방법으로 제공하였다. 혈액검사와 염증지표를 분석하였으며 micro-CT를 이용하여 대퇴부 뼈의 형태학적 미세구조를 측정하였다. 대조군과 고지방식이군의 체중 증가는 각각 $5.85{\pm}1.84g$, $16.06{\pm}5.64g$로 유의한 차이를 보였으며 (p < 0.01), 혈당은 각각 $115.00{\pm}16.88mg/dL$, $188.33{\pm}13.29mg/dL$ (p < 0.01), 중성지방은 각각 $65.00{\pm}6.19mg/dL$, $103.33{\pm}8.02mg/dL$ (p < 0.05)로 나타났다. 렙틴과 IL-6는 고지방식이군에서 유의적으로 높게 나타났다 (p < 0.01). 골대사의 생화학적지표 분석 결과 오스테오칼신은 고지방식이군에서 낮게 나타났으나 유의적이지 않았으며, CTx은 고지방식이군에서 유의적으로 높게 나타났다 (p < 0.01). 골밀도는 고지방식이군에서 낮게 나타났으나 유의적인 차이는 보이지 않았다. 그러나 골의 형태학적 미세구조 분석결과 골소주의 두께는 고지방식이 군이 대조군보다 유의적으로 좁게 나타났으며 (p < 0.05), 골소주의 간격은 고지방식이군이 유의적으로 넓게 나타났다 (p < 0.05). 골의 형태학적 미세구조인 골소주의 간격과 IL-6가 양의 상관성이 나타났다 (p < 0.05). 본 연구결과 최대골밀도가 형성되는 단계의 성장기 마우스에서 고지방식이 공급을 통한 비만 유도 현상은 골소주의 수와 골소주가 차지하는 비율의 변화를 유발하여 골 미세구조에 영향을 미치는 것으로 나타났으며, 염증지표와 상관성이 나타났다. 이에 성장기에 염증지표 증가를 억제하고 정상적인 골형성을 위하여 과잉의 지방섭취 제한이 필요할 것으로 사료된다.

Obesity not only reduces bone mineral density but also increases inflammatory markers. Therefore, we examined the change in inflammatory markers and morphological microstructure of the bones using a mouse model fed a high-fat diet. C57BL/6J 4-week-old male mice were divided into a control group (n = 6) and a experimental group (n = 6); the control group was provided with 10% Kcal fat diet, and the high-fat diet group was provided with 45% Kcal fat diet for 12 weeks using the free provision method. Blood was analyzed for inflammatory markers, and micro-computed tomography was used to measure the morphological microstructure of the femoral bone. The weight increases in the control group and high-fat diet group were $5.85{\pm}1.84g$ and $16.06{\pm}5.64g$, respectively (p < 0.01), glucose was $115.00{\pm}16.88mg/dL$ and $188.33{\pm}13.29mg/dL$ (p < 0.01), and triglycerides were $65.00{\pm}6.19mg/dL$ and $103.33{\pm}8.02mg/dL$ (p < 0.05) respectively. Leptin and interleukin (IL)-6 were significantly higher in the high-fat diet group than that in the control group (p < 0.01). As a result of a biochemical index analysis of bone metabolism, osteocalcin tended to be lower in the high-fat diet group, whereas CTx was significantly higher in the high-fat diet group compared to that in the control group (p < 0.01). The thickness of the bony trabecula was significantly narrower in the high-fat diet group than that in the control group (p < 0.05), and the gap in the bony trabecula was significantly wider in the high-fat diet group than that in the control group (p < 0.05). IL-6 and the gap in the bone trabecula, which was a morphological microstructure of the bones, showed a positive correlation (p < 0.05). Taken together, inducing obesity through a high-fat diet in mice during the growth phase caused a change in bone microstructure and was correlated with the inflammation index. Accordingly, restriction of excessive fat intake may be needed to suppress the inflammatory reactions and promote normal bone formation.

키워드

참고문헌

  1. Ministry of Health and Welfare. Korea national health ans nutrition examination survey report (KNHANES IV); 2009
  2. Kim SH, Kim JY, Ryu KA, Sohn CM. Evaluation of the dietary diversity and nutrient intakes in obese adults. Korean J Community Nutr 2007; 12(5): 583-591
  3. Recker RR, Heaney RP. Peak bone mineral density in young women. JAMA 1993; 270(24): 2926-2927
  4. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 2000; 15(10): 2011-2018 https://doi.org/10.1359/jbmr.2000.15.10.2011
  5. Oh YK, Sohn C. Comparative study on nutrients intake, physical activities and bone mineral density of specialized game high school students according to obesity level. Korean J Community Nutr 2010; 15(3): 393-402
  6. El Hage R, Moussa E, Jacob C. Bone mineral content and density in obese, overweight, and normal-weighted sedentary adolescent girls. J Adolesc Health 2010; 47(6): 591-595 https://doi.org/10.1016/j.jadohealth.2010.04.018
  7. Ducher G, Bass SL, Naughton GA, Eser P, Telford RD, Daly RM. Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr 2009; 90(4): 1104-1111 https://doi.org/10.3945/ajcn.2009.28025
  8. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS. Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 2004; 80(2): 514-523
  9. Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000; 11(8): 327-332 https://doi.org/10.1016/S1043-2760(00)00301-5
  10. Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, Syversen U, Reseland JE. Adiponectin and its receptors are expressed in bone-forming cells. Bone 2004; 35(4): 842- 849 https://doi.org/10.1016/j.bone.2004.06.008
  11. Zoico E, Zamboni M, Di Francesco V, Mazzali G, Fantin F, De Pergola G, Zivelonghi A, Adami S, Bosello O. Relation between adiponectin and bone mineral density in elderly post-menopausal women: role of body composition, leptin, insulin resistance, and dehydroepiandrosterone sulfate. J Endocrinol Invest 2008; 31(4): 297-302
  12. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H, Matsuzawa Y. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 2003; 107(5): 671- 674 https://doi.org/10.1161/01.CIR.0000055188.83694.B3
  13. Kim M, Kim H, Sohn C. Relationship between vitamin K status, bone mineral density, and hs-CRP in young Korean women. Nutr Res Pract 2010; 4(6): 507-514 https://doi.org/10.4162/nrp.2010.4.6.507
  14. Lee Y, Kim M, Choi K, Kim J, Bae W, Kim S, Sohn C. Relationship between inflammation biomarkers, antioxidant vitamins, and bone mineral density in patients with metabolic syndrome. Nutr Res Pract 2011; 5(2): 150-156 https://doi.org/10.4162/nrp.2011.5.2.150
  15. Yasojima K, Schwab C, McGeer EG, McGeer PL. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol 2001; 158(3): 1039-1051 https://doi.org/10.1016/S0002-9440(10)64051-5
  16. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995; 332(5): 305-311 https://doi.org/10.1056/NEJM199502023320506
  17. Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 2010; 95(3): 1247-1255 https://doi.org/10.1210/jc.2009-1475
  18. Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 1991; 9(5): 674-682 https://doi.org/10.1002/jor.1100090507
  19. Kumasaka S, Kawamata R, Okada T, Miyake M, Kashima I. Relationship between bone mineral density and bone stiffness in bone fracture. Oral Radiol 2005; 21(1): 38-40 https://doi.org/10.1007/s11282-005-0028-1
  20. Thomsen JS, Ebbesen EN, Mosekilde L. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone 1998; 22(2): 153-163 https://doi.org/10.1016/S8756-3282(97)00235-4
  21. Lee CJ, Lee W, Lee BD. Morphometric analysis of bone in the ovariectomized rat using in vivo micro-CT. Korean J Oral Maxillofac Radiol 2008; 38(1): 29-37
  22. Song YH, Lee W, Lee CJ, Ji JH, Lee BD. Study of bony trabecular characteristics using bone morphometry and micro-CT. Korean J Oral Maxillofac Radiol 2007; 37(1): 27-33
  23. Kim A, Park T. Diet-induced obesity regulates the galanin-mediated signaling cascade in the adipose tissue of mice. Mol Nutr Food Res 2010; 54(9): 1361-1370 https://doi.org/10.1002/mnfr.200900317
  24. Patsch JM, Kiefer FW, Varga P, Pail P, Rauner M, Stupphann D, Resch H, Moser D, Zysset PK, Stulnig TM, Pietschmann P. Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism 2011; 60(2): 243-249 https://doi.org/10.1016/j.metabol.2009.11.023
  25. Shih CC, Lin CH, Lin WL. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract 2008; 81(2): 134-143 https://doi.org/10.1016/j.diabres.2008.04.023
  26. Lee JH, Son CW, Kim MY, Kim MH, Kim HR, Kwak ES, Kim S, Kim MR. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6J mice fed high fat high cholesterol diet. Nutr Res Pract 2009; 3(2): 114-121 https://doi.org/10.4162/nrp.2009.3.2.114
  27. Kim MA, Jeong YS, Chun GT, Cha YS. Antihyperlipidemic and glycemic control effects of mycelia of inonotus obliquus including protein-bound polysaccharides extract in C57BL/6J mice. J Korean Soc Food Sci Nutr 2009; 38(6): 667-673 https://doi.org/10.3746/jkfn.2009.38.6.667
  28. Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 2005; 42(5): 987-1000 https://doi.org/10.1002/hep.20920
  29. Díez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003; 148(3): 293-300 https://doi.org/10.1530/eje.0.1480293
  30. Asayama K, Hayashibe H, Dobashi K, Uchida N, Nakane T, Kodera K, Shirahata A, Taniyama M. Decrease in serum adiponectin level due to obesity and visceral fat accumulation in children. Obes Res 2003; 11(9): 1072-1079 https://doi.org/10.1038/oby.2003.147
  31. Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity, insulin sensitivity, and beta-cell function. Diabetes Care 2004; 27(2): 547-552 https://doi.org/10.2337/diacare.27.2.547
  32. Fasshauer M, Paschke R, Stumvoll M. Adiponectin, obesity, and cardiovascular disease. Biochimie 2004; 86(11): 779-784 https://doi.org/10.1016/j.biochi.2004.09.016
  33. Yamamoto Y, Hirose H, Saito I, Tomita M, Taniyama M, Matsubara K, Okazaki Y, Ishii T, Nishikai K, Saruta T. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin Sci (Lond) 2002; 103(2): 137-142 https://doi.org/10.1042/CS20010336
  34. Weiss R, Dufour S, Groszmann A, Petersen K, Dziura J, Taksali SE, Shulman G, Caprio S. Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab 2003; 88(5): 2014-2018 https://doi.org/10.1210/jc.2002-021711
  35. Feingold KR, Grunfeld C. Role of cytokines in inducing hyperlipidemia. Diabetes 1992; 41 Suppl 2: 97-101
  36. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004; 92(3): 347-355 https://doi.org/10.1079/BJN20041213
  37. Ahn KY, Choi YS, Lee DW, Kim KY, Kim JH, Sung HN, Choi KM, Kim SM, Lee CB. Relationship between C-reactive protein and obesity in children. Korean J Obes 2009; 18(4): 131-137
  38. Bistrian BR, Khaodhiar L. Chronic systemic inflammation in overweight and obese adults. JAMA 2000; 283(17): 2235-2236 https://doi.org/10.1001/jama.283.17.2235
  39. Rosen HN, Moses AC, Garber J, Iloputaife ID, Ross DS, Lee SL, Greenspan SL. Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int 2000; 66(2): 100-103 https://doi.org/10.1007/PL00005830
  40. Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1984; 1(8386): 1091- 1093
  41. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G. Increased bone formation in osteocalcin-deficient mice. Nature 1996; 382(6590): 448-452
  42. Kim HS. Biochemical marker of bone metabolism. J Korean Soc Pediatr Endocrinol 2006; 11(2): 131-137
  43. Ma H, Torvinen S, Silvennoinen M, Rinnankoski-Tuikka R, Kainulainen H, Morko J, Peng Z, Kujala UM, Rahkila P, Suominen H. Effects of diet-induced obesity and voluntary wheel running on bone properties in young male C57BL/6J mice. Calcif Tissue Int 2010; 86(5): 411-419 https://doi.org/10.1007/s00223-010-9346-3
  44. Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 2006; 83(1): 146-154
  45. Park SJ, Ahn Y, Min HS, Oh KS, Park C, Cho NH, Kimm K. Osteoporosis prevalence of radius and tibia and related factors using multiple bone sites quantitative ultrasound measurement of the Korean health and genome study cohort women. Korean J Community Nutr 2005; 10(4): 536-545
  46. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL. Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res 2001; 16(1): 182-188 https://doi.org/10.1359/jbmr.2001.16.1.182
  47. Cao JJ, Gregoire BR, Gao H. High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone 2009; 44(6): 1097-1104 https://doi.org/10.1016/j.bone.2009.02.017
  48. Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 2005; 146(3): 1226-1235
  49. Lorentzon M, Lorentzon R, Nordström P. Interleukin-6 gene polymorphism is related to bone mineral density during and after puberty in healthy white males: a cross-sectional and longitudinal study. J Bone Miner Res 2000; 15(10): 1944-1949 https://doi.org/10.1359/jbmr.2000.15.10.1944

피인용 문헌

  1. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice vol.53, pp.2, 2013, https://doi.org/10.3164/jcbn.13-25