DOI QR코드

DOI QR Code

Modeling Artificial Groundwater Recharge in the Hancheon Drainage Area, Jeju island, Korea

제주도 한천유역 지하수 모델개발을 통한 인공함양 평가

  • Oh, Se-Hyoung (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Kim, Yong-Cheol (Korea Institute of Geoscience and Mineral Resources) ;
  • Koo, Min-Ho (Department of Geoenvironmental Sciences, Kongju National University)
  • 오세형 (공주대학교 지질환경과학과) ;
  • 김용철 (한국지질자원연구원) ;
  • 구민호 (공주대학교 지질환경과학과)
  • Received : 2011.07.15
  • Accepted : 2011.10.24
  • Published : 2011.12.31

Abstract

For the Hancheon drainage area in Jeju island, a groundwater flow model using Visual MODFLOW was developed to simulate artificial recharge through injection wells installed in the Hancheon reservoir. The model was used to analyze changes of the groundwater level and the water budget due to the artificial recharge. The model assumed that $2{\times}10^6m^3$ of storm water would recharge annually through the injection wells during the rainy season. The transient simulation results showed that the water level rose by 39.6 m at the nearest monitoring well and by 0.26 m at the well located 7 km downstream from the injection wells demonstrating a large extent of the affected area by the artificial recharge. It also shown that, at the time when the recharge ended in the 5th year, the water level increased by 81 m at the artificial reservoir and the radius of influence was about 2.1 km downstream toward the coast. The residence time of recharged groundwater was estimated to be no less than 5 years. The model also illustrated that 15 years of artificial recharge could increase the average linear velocity of groundwater up to 1540 m/yr, which showed 100 m/yr higher than before. Increase of groundwater storage due to artificial recharge was calculated to be $2.4{\times}10^6$ and $4.3{\times}10^6m^3$ at the end of the 5th and 10th years of artificial recharge, respectively. The rate of storage increase was gradually diminished afterwards, and storage increase of $5.0{\times}10^6m^3$ was retained after 15 years of artificial recharge. Conclusively, the artificial recharge system could augment $5.0{\times}10^6m^3$ of additional groundwater resources in the Hancheon area.

Keywords

References

  1. 고기원, 1997, 제주도의 지하수 부존특성과 서귀포층의 수문지질학적 관련성, 부산대학교 이학박사 학위논문, p. 325.
  2. 고기원, 강봉래, 문덕철, 2006, 제주도의 수문지질과 지하수 관리 제도, 제주-하와이 물포럼, 제주 그랜드호텔.
  3. 구민호, 이대하, 2002, 지하수위 변동법에 의한 지하수 함양량 산정의 수치해석적 분석, 지질학회지, 38(3), 407-420.
  4. 나한나, 구민호, 차장환, 김용제, 2007, 지하수 모델의 주요 수문 경계에 대한 민감도 분석 사례, 지하수토양환경, 12(3), 53-65.
  5. 박기화, 안주성, 기원서, 박원배, 2006, 제주도 지질여행, 한국지질자원연구원, 제주발전연구원, p. 183.
  6. 박기화, 이병주, 조등룡, 김정찬, 이승렬, 김유봉, 최현일, 황재하, 송교영, 최범영, 조병욱, 2000, 제주.애월도폭 지질보고서, 제주도.
  7. 서정아, 2009, 제주도 지역 지하수 흐름 모델 개발, 공주대학교 지질과학과 석사학위 논문, p. 46.
  8. 연합뉴스, 2007.9, 태풍 '나리' 강타..최악의 물난리.
  9. 이봉주, 구민호, 박윤석, 고기원, 박기화, 2006, 제주 동부지역의 수리확산계수와 지하수 도관 유동 가능성, 지질학회지, 42(3), 439-454.
  10. 제주발전연구원, 2008, 하천 유출수 활용방한 마련을 위한 수문 및 수질특성 기초연구.
  11. 제주시, 2008, 한천저류지 조성공사 보고서.
  12. 한국수자원공사, 2003, 제주도 수문지질 및 지하수자원 종합조사(3) 보고서, p. 175.
  13. 한국수자원공사, 2008, 지하수조사연보.
  14. 한국지질자원연구원, 제주도, 2005, 제주도 지하수 부존 특성에 대한 지구과학적 해석, p. 231.
  15. 한국지질자원연구원, 제주도, 2008, 제주도 지하수 부존 특성에 대한 지구과학적 해석, p. 267.
  16. 한정상, 김창기, 김남종, 한규상, 한찬, 1994, 제주도 지하수 자원의 최적개발 가능량, 지하수환경, 1(1), 33-50.
  17. Anderson, M.P. and Woussner, W.W., 1992, Applied groundwater modeling: Simulation of flow and advective transport, Academic Press, San Diego, p. 381.
  18. Bouwer, H., 2002, Artificial recharge of groundwater: hydrogeology and engineering, Hydrogeol. J., 10, 121-142. https://doi.org/10.1007/s10040-001-0182-4
  19. Hamm, S., Cheong, J., Jang, S., Jung, C., and Kim, B., 2005, Relationship between transmissivity and specific calaciry in the volcanic aquifers of Jeju Island, Korea, J. Hydrol., 310, 11-121.

Cited by

  1. Heterogeneity characterization in a coastal confined aquifer of the Nakdong River delta area using geological and groundwater modeling vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.511
  2. Setup of Infiltration Galleries and Preliminary Test for Estimating Its Effectiveness in Sangdae-ri Water Curtain Cultivation Area of Cheongju, Korea vol.49, pp.6, 2016, https://doi.org/10.9719/EEG.2016.49.6.445
  3. Groundwater resources in Gangwon Province: Tasks and perspectives responding to droughts vol.51, pp.6, 2015, https://doi.org/10.14770/jgsk.2015.51.6.585
  4. Examination for Efficiency of Groundwater Artificial Recharge in Alluvial Aquifer Near Nakdong River of Changweon Area, Korea vol.47, pp.6, 2014, https://doi.org/10.9719/EEG.2014.47.6.611
  5. Strategies for an effective artificial recharge in alluvial stream-aquifer systems undergoing heavy seasonal pumping vol.52, pp.3, 2016, https://doi.org/10.14770/jgsk.2016.52.3.211
  6. Determining Optimal Locations of an Artificial Recharge Well using an Optimization-coupled Groundwater Flow Model vol.19, pp.3, 2014, https://doi.org/10.7857/JSGE.2014.19.3.066
  7. Replacement of Saline Water through Injecting Fresh Water into a Confined Saline Aquifer at the Nakdong River Delta Area vol.25, pp.2, 2015, https://doi.org/10.9720/kseg.2015.2.215
  8. Preliminary study on the comparison of water supply costs between groundwater and surface water vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.457