초록
본 논문에서는 모델 기반으로 추정한 사람의 시선 방향을 이용하여 실내 환경에서 발생 할 수 있는 사람의 행동을 인식하는 방법을 제안한다. 제안하는 방법은 크게 두 단계로 구성된다. 첫째, 행동 인식을 위한 사전 정보를 얻는 단계로 사람의 머리 영역을 검출하고 시선 방향을 추정한다. 사람의 머리 영역은 색상 정보와 모양 정보를 이용하여 검출하고, 시선 방향은 머리와 얼굴의 관계를 표현한 베이지안 네트워크 모델을 이용하여 추정한다. 둘째, 이벤트와 사람의 행동을 나타내는 시나리오를 인식하는 단계이다. 이벤트는 사람의 상태 변화로 인식하고, 시나리오는 이벤트들의 조합과 제약 사항을 이용하여 규칙 기반으로 인식한다. 본 논문에서는 시선방향과 연관이 있는 4 가지의 시나리오를 정의하여 실험 한다. 실험을 통해 시선 방향 추정의 성능과 시선 방향이 고려된 상황에서의 행동 인식 성능을 보인다.
In this paper, we propose a method which recognizes human activity using model-based gaze direction estimation in an indoor environment. The method consists of two steps. First, we detect a head region and estimate its gaze direction as prior information in the human activity recognition. We use color and shape information for the detection of head region and use Bayesian Network model representing relationships between a head and a face for the estimation of gaze direction. Second, we recognize event and scenario describing the human activity. We use change of human state for the event recognition and use a rule-based method with combination of events and some constraints. We define 4 types of scenarios related to the gaze direction. We show performance of the gaze direction estimation and human activity recognition with results of experiments.