DOI QR코드

DOI QR Code

Effect of Surface Treatments with Flame Plasma and Silane on Mechanical Properties of Silica Reinforced Elastomeric Composites

화염 플라즈마 및 실란 표면처리가 실리카 강화 고무복합재료의 기계적 특성에 미치는 영향

  • 이준만 (영남대학교 기계공학부 대학원) ;
  • 류상렬 (영남대학교 기계공학부) ;
  • 이동주 (영남대학교 기계공학부)
  • Received : 2011.07.13
  • Accepted : 2011.12.07
  • Published : 2011.12.31

Abstract

The effect of surface treatments with the atmospheric pressure flame plasma (APFP) and epoxy silane (ES) is experimentally investigated to yield the best mechanical properties of silica ($V_f=40%$) reinforced elastomeric composites. The tensile strength of the composites is increased significantly with decrease the mean diameter. When the diameter is $2.2{\mu}m$, that of the composite is increased about 1.4 times compared to the matrix (2.52 MPa). Also, the tensile strength of silica reinforced composites with APFP and ES treated is increased 8.8~13.3%, 9.9~12.5%, respectively. When the diameter is $26.6{\mu}m$, the tensile modulus of the composite is increased about 2 times compared to the matrix (0.88MPa), and the tensile modulus of silica reinforced composites with APFP and ES treated is increased 15.6~22.8%, 21.1~5.8%, respectively. Conventional silane coupling agent treatment have a few disadvantages because of using organic solvents. However APFP treatment is a fast, economic and eco-friendly method to improve the mechanical properties.

대기압 화염 플라즈마(APFP) 및 에폭시 실란(ES) 표면처리 한 실리카($V_f=40%$) 강화 고무복합재료의 기계적 특성에 대한 실험적 연구를 수행하였다. 고무복합재료의 인장강도는 평균 입자경이 감소할수록 크게 증가하였고, 평균 입자경 $2.2{\mu}m$일때, 기지(2.52MPa)에 비해 1.4배 증가하였다. 또한 APFP 및 EP의 처리로 인장강도가 각각 8.8~13.3%, 9.9~12.5% 향상되었다. 평균 입자경이 $26.6{\mu}m$일 때, 고무복합재료의 인장탄성율은 기지(0.88MPa)에 비해 2배 증가하였고, APFP 및 EP의 처리로 인장 탄성율이 각각 15.6~22.8%, 21.1~25.8% 증가되었다. 기존의 실란 커플링제 처리방법은 유기용제의 사용 등의 몇 가지 단점을 가지고 있지만, APFP 처리법은 기계적 특성을 향상시키는데 빠르고, 경제적이며 친환경적인 방법이라 판단된다.

Keywords

References

  1. Zhu, Z.K., Yang, Y., Yin, J., and Qi, Z.N., "Preparation and Properties of Organosoluble Polyimide/silica Hybrid Materials by Sol-Gel Process," J Appl. Polym. Sci., Vol. 73, 1999, pp. 2977-2984. https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2977::AID-APP22>3.0.CO;2-J
  2. Fu, S.Y., and Lauke, B., "Characterization of Tensile Behaviour of Hybrid Short Glass Fibre Calcite Particle ABS Composites," Composite Part A, Vol. 29, No. 5-6, 1998, pp. 575-583. https://doi.org/10.1016/S1359-835X(97)00117-6
  3. Amdouni, N., Sautereau, H., and Gerard, J.F., "Epoxy Composites Based on Glass-beads. 2. Mechanical- Properties," J Appl. Polym. Sci., Vol. 46, 1992, pp. 1723-1735. https://doi.org/10.1002/app.1992.070461004
  4. Wang, M., Berry, C., Braden, M., and Bonfield, W., "Young's and Shear Moduli of Ceramic Particle Filled Polyethylene," J Mater. Sci. Mater. Med., Vol. 9, 1998, pp. 621-624. https://doi.org/10.1023/A:1008975323486
  5. Hamed, G.R., "Reinforcement of Rubber," Rubber Chem. and Tech., Vol. 73, 2000, p. 524. https://doi.org/10.5254/1.3547603
  6. Rodriguez, J., and Hamed, G.R., "Stylene-Butadiene Rubber Filled With Fluorinated Carbon Black," Rubber Chem. and Tech., Vol. 66, 1993, p. 286. https://doi.org/10.5254/1.3538312
  7. Ames, K., Gibala D., and Hamed, G.R., "Stylene-Butadiene Rubber Filled With Fluorinated Carbon Black: Part II. Effect of Curative Level," Rubber Chem. and Tech., Vol. 69, 1996, p. 273. https://doi.org/10.5254/1.3538372
  8. Thongpin, C., Sripetdee, C., Papaka, N., Pongsathornviwat, N., and Sombatsompop, N., "The Effect of Second Filler on Cure Characteristic and Mechanical Properties of Si-69 Treated Precipitate Silica/NR Composite," Advanced Materials Research, Vol. 79-82, 2009, pp. 2183-2186. https://doi.org/10.4028/www.scientific.net/AMR.79-82.2183
  9. Ansarifara, A., Azharb, A., Ibrahima, N., Shiaha, S.F., and Lawto, J.M.D., "The Use of a Silanised Silica Filler to Reinforce and Crosslink Natural Rubber," Int. J of Adhesion & Adhesives, Vol. 25, 2005, pp. 77-86. https://doi.org/10.1016/j.ijadhadh.2004.04.002
  10. 류상렬, 이동주, "대기압 화염 플라즈마 처리가 강판의 표면 및 고무와의 접착특성에 미치는 영향," 한국복합재료학회지, 제23권 5호, 2010, pp. 1-7.
  11. Sun, L., Chen, J., and Lynch, V., "Nanosiliver-Reinforced Antimicrobial Cellulose Fiber," 2011 TAPPI International Conference on Nanotechnology for Renewable Materials, June 6-8, 2011.
  12. 류상렬, 이동주, "대기압 플라즈마 처리한 폴리아미드 직물과 NBR의 접착특성," 한국복합재료학회지, 제23권 6호, 2010, pp. 32-38.
  13. 박수진, 진성열, 강수진, "충전재-탄성체 상호작용. 11. 상압플라즈마 처리가 나노구조의 실리카 표면특성에 미치는 영향," Elastomer, 제40권 1호, 2005, pp. 22-28.
  14. 엄환섭, "대기압 플라즈마와 응용," 한국진공학회지, 제 15권 2호, 2006, pp. 117-138.
  15. 이찬주, 이상곤, 박근환, 김병민, "대기압 Ar/$O_{2}$ 플라즈마 표면처리된 자동차용 냉연강판의 표면특성 및 접착특성 평가," 대한기계학회논문집(A), Vol. 32, No. 4, 2008, pp. 354-361.
  16. Pukanszky, B., and Voros, G., "Mechanism of Interfacial Interactions in Particulate Filled Composites," Composite Interface, Vol. 1, 1993, pp. 411-427.
  17. Nakamura, Y, Yamaguchi, M, Okubo, M., and Matsumoto, T., "Effects of Particle Size on Mechanical and Impact Properties of Epoxy Resin Filled with Spherical Silica," J Appl. Polym. Sci., Vol. 45, 1992, pp. 1281-2189. https://doi.org/10.1002/app.1992.070450716
  18. Chuayjuljit, S., Imvittaya, A., Na-Ranong, N., and Potiyara, P., "Effects of Particle Size and Amount of Carbon Black and Calcium Carbonate on Curing Characteristics and Dynamic Mechanical Properties of Natural Rubber," J of Metals, Materials and Minerals, Vol. 12, No. 1, 2002, pp. 51-57.