DOI QR코드

DOI QR Code

Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein

  • Costa, Solange Dos Santos (Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas Caixa Posta) ;
  • Golim, Marjorie De Assis (Department of Genetics, Evolution and Bioagents, Biology Institute, Universidade Estadual de Campinas) ;
  • Bergmann, Bartira Rossi (Blood Center, Faculty of Medicine, School of Medicine, Universidade Estadual Paulista) ;
  • Costa, Fabio Trindade Maranhao (Carlos Chagas Filho Institute, Universidade Federal do Rio de Janeiro) ;
  • Giorgio, Selma (Department of Animal Biology, Biology Institute, Universidade Estadual de Campinas Caixa Posta)
  • Received : 2011.07.04
  • Accepted : 2011.08.24
  • Published : 2011.12.15

Abstract

Various Leishmania species were engineered with green fluorescent protein (GFP) using episomal vectors that encoded an antibiotic resistance gene, such as aminoglycoside geneticin sulphate (G418). Most reports of GFP-Leishmania have used the flagellated extracellular promastigote, the stage of parasite detected in the midgut of the sandfly vector; fewer studies have been performed with amastigotes, the stage of parasite detected in mammals. In this study, comparisons were made regarding the efficiency for in vitro G418 selection of GFP-Leishmania amazonensis promastigotes and amastigotes and the use of in vivo G418 selection. The GFP-promastigotes retained episomal plasmid for a prolonged period and G418 treatment was necessary and efficient for in vitro selection. In contrast, GFP-amastigotes showed low retention of the episomal plasmid in the absence of G418 selection and low sensitivity to antibiotics in vitro. The use of protocols for G418 selection using infected BALB/c mice also indicated low sensitivity to antibiotics against amastigotes in cutaneous lesions.

Keywords

References

  1. Ha DS, Schwarz JK, Turco SJ, Beverley SM. Use of the green fluorescent protein as a marker in transfected Leishmania. Mol Biochem Parasitol 1996; 77: 57-64. https://doi.org/10.1016/0166-6851(96)02580-7
  2. Misslitz A, Mottram JC, Overath P, Aebischer T. Targeted integration into a rRNA locus results in uniform and high level expression of transgenes in Leishmania amastigotes. Mol Biochem Parasitol 2000; 107: 251-261. https://doi.org/10.1016/S0166-6851(00)00195-X
  3. Sereno D, Roy G, Lemesre JL, Papadopoulou B, Ouellette M. DNA transformation of Leishmania infantum axenic amastigotes and their use in drug screening. Antimicrob Agents Chemother 2001; 45: 1168-1173. https://doi.org/10.1128/AAC.45.4.1168-1173.2001
  4. Kamau SW, Grimm F, Hehl AB. Expression of green fluorescent protein as a marker for effects of antileishmanial compounds in vitro. Antimicrob Agents Chemother 2001; 45: 3654-3656. https://doi.org/10.1128/AAC.45.12.3654-3656.2001
  5. Chan MM, Bulinski JC, Chang KP, Fong D. A microplate assay for Leishmania amazonensis promastigotes expressing multimeric green fluorescent protein. Parasitol Res 2003; 89: 266-271.
  6. Okuno T, Goto Y, Matsumoto Y, Otsuka H, Matsumoto Y. Applications of recombinant Leishmania amazonensis expressing egfp or the beta-galactosidase gene for drug screening and histopathological analysis. Exp Anim 2003; 52: 109-118. https://doi.org/10.1538/expanim.52.109
  7. Singh N, Gupta R, Jaiswal AK, Sundar S, Dube A. Transgenic Leishmania donovani clinical isolates expressing green fluorescent protein constitutively for rapid and reliable ex vivo drug screening. J Antimicrob Chemother 2009; 64: 370-374. https://doi.org/10.1093/jac/dkp206
  8. Varela M RE, Munoz DL, Robledo SM, Kolli BK, Dutta S, Chang KP, Muskus C. Leishmania (Viannia) panamensis: An in vitro assay using the expression of GFP for screening of antileishmanial drug. Exp Parasitol 2009; 122: 134-139. https://doi.org/10.1016/j.exppara.2009.02.012
  9. Singh N, Dube A. Short report: fluorescent Leishmania: application to anti-leishmanial drug testing. Am J Trop Med Hyg 2004; 71: 400-402.
  10. Kain SR. Green fluorescent protein (GFP): Applications in cell-based assays for drug discovery. Drug Discov Today 1999; 4: 304-312. https://doi.org/10.1016/S1359-6446(99)01330-6
  11. Mehta SR, Huang R, Yang M, Zhang XQ, Kolli B, Chang KP, Hoffman RM, Goto Y, Badaro R, Schooley RT. Real-time in vivo green fluorescent protein imaging of a murine leishmaniasis model as a new tool for Leishmania vaccine and drug discovery. Clin Vaccine Immunol 2008; 15: 1764-1770. https://doi.org/10.1128/CVI.00270-08
  12. Roy G, Dumas C, Sereno D, Wu Y, Singh AK, Tremblay MJ, Ouellette M, Olivier M, Papadopoulou B. Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol 2000; 110: 195-206. https://doi.org/10.1016/S0166-6851(00)00270-X
  13. Shimony O, Jaffe CL. Rapid fluorescent assay for screening drugs on Leishmania amastigotes. J Microbiol Methods 2008; 75: 196-200. https://doi.org/10.1016/j.mimet.2008.05.026
  14. Grimaldi G Jr, Tesh RB. Leishmaniases of the new world: Current concepts and implications for future research. Clin Microbiol Rev 1993; 6: 230-250. https://doi.org/10.1128/CMR.6.3.230
  15. Desjeux P. Leishmaniasis: Current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004; 27: 305-318. https://doi.org/10.1016/j.cimid.2004.03.004
  16. Rossi-Bergmann B, Lenglet A, Bezerra-Santos CR, Costa-Pinto D, Traub-Czeko YM. Use of fluorescent Leishmania for faster quantitation of parasite growth in vitro and in vivo. Mem Inst Oswaldo Cruz 1999; 94: 74.
  17. Arrais-Silva WW, Pinto EF, Rossi-Bergmann B, Giorgio S. Hyperbaric oxygen therapy reduces the size of Leishmania amazonensis-induced soft tissue lesions in mice. Acta Trop 2006; 98: 130-136. https://doi.org/10.1016/j.actatropica.2006.03.001
  18. Boeck P, Bandeira Falcao CA, Leal PC, Yunes RA, Filho VC, Torres-Santos EC, Rossi-Bergmann B. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg Med Chem 2006; 14: 1538-1545. https://doi.org/10.1016/j.bmc.2005.10.005
  19. Colhone MC, Arrais-Silva WW, Picoli C, Giorgio S. Effect of hypoxia on macrophage infection by Leishmania amazonensis. J Parasitol 2004; 90: 510-515. https://doi.org/10.1645/GE-3286
  20. Naumov GN, Wilson SM, MacDonald IC, Schmidt EE, Morris VL, Groom AC, Hoffman RM, Chambers AF. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 1999; 112: 1835-1842.
  21. Wade-Martins R, Frampton J, James MR. Long-term stability of large insert genomic DNA episomal shuttle vectors in human cells. Nucleic Acids Res 1999; 27: 1674-1682. https://doi.org/10.1093/nar/27.7.1674
  22. Murphy NB, Muthiani AM, Peregrine AS. Use of an in vivo system to determine the G418 resistance phenotype of bloodstream-form Trypanosoma brucei brucei transfectants. Antimicrob Agents Chemother 1993; 37: 1167-1170. https://doi.org/10.1128/AAC.37.5.1167
  23. Appel KF, Wolff AM, Arnau J. A multicopy vector system for genetic studies in Mucor circinelloides and other zygomycetes. Mol Genet Genomics 2004; 271: 595-602. https://doi.org/10.1007/s00438-004-1008-6

Cited by

  1. EGFP reporter protein: its immunogenicity in Leishmania-infected BALB/c mice vol.100, pp.9, 2016, https://doi.org/10.1007/s00253-015-7201-1
  2. Broad Spectrum and Safety of Oral Treatment with a Promising Nitrosylated Chalcone in Murine Leishmaniasis vol.62, pp.10, 2018, https://doi.org/10.1128/aac.00792-18
  3. Single-dose treatment for cutaneous leishmaniasis with an easily synthesized chalcone entrapped in polymeric microparticles vol.147, pp.9, 2011, https://doi.org/10.1017/s0031182020000712
  4. Antileishmanial Chemotherapy through Clemastine Fumarate Mediated Inhibition of the Leishmania Inositol Phosphorylceramide Synthase vol.7, pp.1, 2021, https://doi.org/10.1021/acsinfecdis.0c00546
  5. Ex Vivo Phenotypic Screening of Two Small Repurposing Drug Collections Identifies Nifuratel as a Potential New Treatment against Visceral and Cutaneous Leishmaniasis vol.7, pp.8, 2011, https://doi.org/10.1021/acsinfecdis.1c00139