Journal of the Society of Korea Industrial and Systems Engineering
Vol. 34, No. 4, pp.98—105, December 2011.

72 71s 582 138 IMES(RI5E d9ER A2e)2 9§
s

An Optimal Algorithm for the IMES (Intelligent Multi-Echelon
Systems) with Finite Operating Capacity

Tai-Young Kim
School of Management, Dongyang Mirae University, Seoul, Korea

TEFE AFE M ARa 840 IBA A AFE T oHe BEL 9
3 7]

dd 55 = 5 Atk FEsks AFo diste] mgo) ‘:‘a“%}%} 3 7H4E FAS S| 2 A 3}
I, ZAE FFL s gojrtok gk o2 EAlol g BA Axde AxH 5e4S AYdE F2E
f20]7] e, g A2 FA it B A7 o] FojA gt

< A7AME $A T FANAG o8] A9 FEVINE dAoR su glow, BRFY dsld m $4
TEZIAS A A 2 A &9 kg nsa Yk 7 NG FEAE 2 29 5Ho| AF
Hof gl Aoz JPgdta glen, 449 7o A2 AFL AT T °o THAE dve AT B
fratAY fA8tx g 04 £ Fgduts FA3 ok F3 sheol Hie A& dnFL ol 3

tstel 29 S8 FAE ntEA 2&4e HUselr) st AEHAT
A9 EVVMWL AF 1] TG 29 A BAEF AF FI wg &40l v I, A2Ho]
AT ¢ e A #8E £ dE Y9 #A7 AvHo] gt trlgHo| 2 7]ulsia "X‘gﬁr T8
o 9% Hl% € Aoy, AHHE 7T 7 Yt MES(HTY dHEF A2d)e Asigt 94 A

3ol SIT A VG A WSE RLATOA A9 0 AFFE RPAT, A2 A8} 242
S A el AE T 5 b 284S 23 STUES ALAUG £ AT FAL AA s 268
& A2AIE Ao, AAT Foho] YuATE WD FAAANE B¢ A9E AN} AL LrelFel 3
Foha £4Ye wQT ALY YTAFA dofe] S AHsm BEH AN AHE A& 5 A%ow, of
WS B ASHm JASA BE BAS 2% 5 Ug Aoz yrun

Keywords : IMES (Intelligent Multi-Echelon Systems), Repairable-Item, Optimal Algorithm

1. Introduction are expensive, critically important, and subject to infrequent
failures such as engines of a fighter plane or a ship. They
Repairable items are referred to as components, which should be replaced or repaired immediately, if failed, for
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the system to maintain availability. For this reason the policy
on the inventory or shortage levels is very important and
naturally has been studied for a long time by many res-
earchers. There are two main streams of research in this
area. A METRIC model, developed by Sherbrooke [19] as-
sumes infinite repair capacity. In his model, there are many
bases and a central depot. A failed item at a base is dis-
patched to a repair facility and a spare, if available, is plugged
in. Otherwise, it is backordered. A repaired item fills the
backorder or is stored at a spare inventory point if there is
no backorder, Feeney and Sherbrooke [4], Muckstadt [15, 16],
Muckstadt and Thomas [17] extended this model. However,
as Albright [1] has pointed out, models assuming infinite
repair capacity always underestimate the amount of con-
gestion in the system and, consequently, result in fewer
spares than are really needed to achieve a specified backorder
level.

Another stream of study adopts the finite repair capacity,
constant-fatlure-rate assumptions. The models in this stream
are more realistic than the comparable METRIC models.
Gross et al. {5] considered a two-echelon (two levels of
repair, one level of supply) system and presented an implicit
enumeration algorithm to calculate the capacities of the base
and depot repair facilities as well as the spares level which
together guarantee a specified fill-rate at a minimum cost.
Inevitably, the enumeration scheme of the method requires
considerable computing times even for relatively small pro-
blems. Gross et al. [5, 6] and Albright and Soni [2] analyzed
the operating characteristics of a given system with multi-
dimensional Markov process. In another paper Albright [1]
developed an approximation algorithm with a single type
of item stocked and repaired by several bases and a central
depot. The proposed methods in this stream concentrate on
the analysis of the current status of a given system and,
consequently, are impractical to apply to optimization pro-
blems.

More recently, Pasandideh et al. [18] and Wang et al. [20]
developed the genetic-algorithm for two-echelon systems
and Gumus et al. [8] and Hu et al. [9] developed the algo-
rithm using neuro-fuzzy for multi-echelon system. Kim et
al. [12, 13, 14] developed an algorithm to determine the
optimal inventory level under finite repair capacities. Jung
et al. [10] and Kim et al. [11] presented a method to solve
a two-echelon system with lateral transshipment. However
their assumption that infinite number of items operating at
each base is limited to real world. Thus, an efficient algo-
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rithm for IMES (Intelligent Multi-Echelon Systems) with fi-
nite items is developed to overcome their limitation. In other
words, the system has finite number of operating items so
the failure rates of items at the bases depend on the current
number of items online. Based on the queueing theory and
special properties of a cost function, an algorithm is devel-
oped to find the amount of spare at each inventory which
minimizes the total expected holding plus shortage costs
and simultaneously achieve a specified minimum fill-rate.

This article is organized as follows. In Section 2 the mod-
el with the required parameters and probability distributions
of model are described. In Section 3, the detailed algorithm
steps for the model along with an example are presented.
In Section 4, computational experiments and the results of
the study are summarized. Finally, concluding remarks are
presented in Section 5.

2. Model Description
2.1 Assumptions and Notation

We consider a system with several bases and a central
depot and a single type of items. At base 7 there can be
as many as m, operating items at any given time. Each
base also maintains extra items as spare. The central depot
stocks no spare and only repairs. the failed items from bases.
Time intervals between failures of an item operating at base
i are exponentially distributed with mean, 1/a;, i=1,2, -, L
A failed item is replaced immediately by a base spare if
one is available. Otherwise, the replacement is backordered
until a spare becomes available, i.e., a repair is completed
at the base repair center or an item is arrived from the depot.
A failed item is evaluated to be depot-repairable with proba-
bility 1—¢, and base-repairable with g..

At the base repair center, item completed a repair is used
to fill an outstanding backorder or stored at the spare in-
ventory point. At the depot, item finished a repair is sent
to a base which has repair request yet to be filled. When
there are several such bases, a first-come, first-serve basis
is used to select a base. Since the depot has no inventory,
repaired item is transported to a selected base immediately

Notations are as follows;

A,  failure rate of online item at base 1,

w; © repair rate of a service channel at base ¢ repair
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center,
tq - repair rate of a service channel at depot repair center,

c; . number of repair channel at base i repair center,
c; : number of repair channel at depot repair center,
f; : minimum required fill-rate at base s,

F, : actual fill-rate at base 1,

n; : number of operating items at base i,

m; . maximum number of operating items online at base i,
b, : number of item at base i repair center,

z; . total number of failed items of base i,

d : number of item at depot repair center,

d; : number of item at depot repair center owed to base i,
h; : unit holding cost per unit time of base ¢,

e; : unit shortage cost per unit time of base ¢,

r;  initial spare inventory level at base 1,

;i : minimum inventory level satisfying minimum re-

quired fill-rate at base i,

r; : inventory level with the minimum total expected
cost and satisfying minimum required fill-rate at
base 1.

We make three additional assumptions. First, all failed
items can be repaired, so that there are no condemnations.
Second, no lateral supply between bases is allowed. Finally,
travel times from the bases to the depot and vice versa are
ignored. A system with travel times is more general than
the considered system and might require a more complex
approach to find a solution.

2.2 Probability Distribution of ltems at the
Base Repair Center Given the Number of
Items at the Depot

The failure rate of base 7 depends upon the number of
operating item at the base. Thus the failure rate is n,c;.
Since then umber of operating item n, =o,+r,—b,—d,,
failure rate of the bases as follows.

mgo; (o< b, Sri—di)
Albld,) ={[ml +r, =, +d)lge;, (r;—d, <b <m, +r.—dy (1)
0 (b, >m; +r,—d,)

Let there be ¢; service channels at the repair center of
base ¢ item. The repair times at each channel are assumed
to be exponential with mean 1/, then there pair rate at

of

base 3, p(b,), is given by equation (2).

w853
Since we assume finite population, the base repair center
can be modeled as an M/M/c,/oo/m; queueing model.
The probability distribution that there are 5, items at the
base repair center ¢,given value of k;, is given by the equa-
tion (3)-(5) when k; is less than or equal to =, and other

case is given by equation (6)-(8).
) d <r

if 1<b,<g,

b,
P(b,ld,) = P(0ld;) €)

as if ¢, <b, <m,+r,—d,

/el 5
m; 'm;l/e, q.0;
P(bi|di) = : b-—q-( l) P(Oldi) (4)
[mz--i-ri—di—bi] le; H
where
61 ml.)’ g, b
p(0ld;) = : (#) &)
b,zjo bty
Tﬁﬁ_dl mzr 'm,! (qiai)bi -
+ = -
hma  [my+r—d,—b]lc Set\ M
il) d;, >,

if 1<b,<g,

(mi-l-ri—di)! (qiai

by
i+ri—di_bi] 1b,! _ﬁz—) P(0|di> 6)

P(bi |dl) = [m

as if ¢, <b, <m;+r,—d,

+r,—d ) ¢! Q; b
P(bi'di): (mz i ) - (q_) P(Oldi) (7)
[m,+r;—d,—b] le; “\ H
where
671 (m,+7,—d)! ¢, b
p(0ld;) = b;g (mi+n—bi—dz->!(7,» (8)

+ri—d 5171
+ml+i 3 (m;+r,—d,)! (qiai) }
b=¢

[m,+r,—b,=d] te} S\ Hi
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Note that the above probability distributions do not exist
unless the steady-state condition, i.c., p, =

is satisfied.

migia;/cp; <1,

2.3 Probability Distribution at the Depot Repair
Center

We approximate the queueing system at the depot as a

one-dimensional birth-death model. To do this, we need in-

put rate A(d) and repair rate u(d) for each state d of the
depot. The repair rate u(d) is in (9).

_Jdiy, 0= d < ¢y
(d)_{cdud, c <d 9)

The input rate p(d) is dependent upon the current states
of each base. We estimate expected value of the number
of operating item at each base for a given number of item
at the depot by iterative procedure. Then we calculate the
input rate p(d) using the estimated value of E(n/)d) as
n (10).

Ad) ZE(nld (1~¢) (10)

That is, the arrival rate can be approximated by the sum
of the arrival rate from each base setting the number of
operating item as its expected value. The iterative procedure
starts by assigning an arbitrary value to E(n;]d). Then we

use the following relationships to estimate E(n|d) again.

ritm;

Eln,ld) = ZPn > n,ld) an

i

Tim

EZPm >nld,, b, d)Pbd, d,)Pld)d)
b d;

=)

n,=

7+

-z

y

3

3 Plr, +m; —b,—d; >nld,, b, d)P(b/d, d,)P(d,|d)
b, d,

tak
0 b

Note that, when b, +d, = r;, n,=r,+m,—b,—d

the number of operating item at base ¢ = initial spare in-

5, 1.8,
ventory level+the maximum number of operating item-
number at the base repair center-number at the depot repair
center. when b, +d, > 17;, n, =m..

P(bld, d;) = P(b]d,) can be found in the equation (3)-(8).
We can find the conditional distribution P(d)d, b,) as a bi-

nomial distribution with parameters d and g, truncated at

B LeEs
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the minimum and maximum values of d;. The maximum

value is max (0, d—Z(rj+mj)) and the minimum value
j#i

is min(d,ri +m,)

Let 6, = En Jog/ S Eln g (12)

Thus g; approximates the probability that a given item
at the depot is from the base i.

Then P(d)d) = (j)ofﬁ(l—ei)d‘d: - (13)
max (0, d—E(rﬁ—m)) <d, < min(d, T +mi)
VEX?

P(d)d) in (13) should be normalized to make its sum
unity. »;P(d; < r,+m;—b,—nb; d; d) can be calculated
b

by P(d)d) in (13). Using the equation (11)-(13), we are
able to find a new value of F(n/d). This new value of
Eln,ld) is used for initiating the next iteration. The iteration
stops when two successive values of Eln,d) are sufficiently
close. Once we find an appropriate value of E(n/d), we
then find P(d) from a one-dimensional birth-death model
using A(d), u(d) as input and output rates.

2.4 Probability Distribution at the Base Repair
Center

To find P(b,), we derive P(d,) as in (14).

f ()P (14)

where A=Y, (r,+m,;), we find P(b,) as in (15) using

o +my

=Y, P(bd,) P(d,) (15)
d=0

2.5 Probability Distribution of Total Failed ltems

We define a total failed item as sum of items in base
repair center and in the depot repair center. Its probability
distribution is obtained by convolution of the two proba-
bility distributions as in equation (16).
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Plz) = E’;Tg P(d, = z,—b,) P(b,) (16)

2.6 Minimum Fill-Rate

The problem addressed here is to find an initial spare
inventory level at each base to satisfy the minimum required
fill-rate of each base with minimum total expected cost.
The actual fill-rate, 7, which is the probability that a failed
item is replaced by a spare, should be larger than or equal
to the minimum required fill-rate f;;,. The relationship can
be expressed as in equation (17).

r;—1

F;=Pr{zi<7‘i}=zp(zi)2fij (17)

z;=0
2.7 Cost Function

If the total failed items of base i, z;, is larger than the
spare inventory level r;, then the shortage cost e, is incurred
for each backorder. On the other hand, The holding cost
h, is charged on all the spares in base i. When we assume
linear holding and shortage costs, the total expected cost
of the system, which is the sum of the shortage and holding
costs of the bases, can be obtained by equation (18).

7
TC(S) =Y, TC(r,)
i=1
I m;+r; V
=Y hrite Y (zi—ri)P(zi)} (18)
i=1 zi=r,+1 :

3. The Algorithm

Step 1 : Verify that the following steady-state conditions
are satisfied.

Py = Emi%(l*qi)/cdud <1 and
i
Py :m,—qia,-/ciui <1 fori=1,2,-, 1T

If the conditions are met, go to Step 1. Otherwise, stop
since the system can not reach steady state.

Step 2 : Find the minimum cost initial spare inventory
level for each base when there is infinite num-
ber of operating capacity item.

of

Step 3 : Find probability distribution for the depot.
Step 4 : Find probability distribution for each base.
Step 5 :
Step 5.1 : For each base with s, > 1, calculate
ATC(S6s;) = TC(Sls;—1) — TC(Sls;).
Step 5.2 : If ATC(S|ds;) =0 or s, =0 for all 4, go
' to Step 6. Otherwise et i* =" A 7C(S15s,)
and Sy« Se——1, mem+1.
Step 5.3 : For base i, recalculate probability for s,—1.
Go to ‘Step 4.
Step 6 : The s,’s are solution of the algorithm. Expected

total cost of each base is 7'C,(s;) and expected
total cost of system is 7°C(S).

In step 2, we find the minimum cost spare level for the
infinite number of operating item case and use the spare
level as a starting point for the subsequent search. Detailed
discussion for finding the values can be found in Gross et
al. [7]. Steps 3 and 4 are to calculate the probability dis-
tributions previously defined. In step 5, we find a local min-
imum point of the total cost function using iterative pro-
cedure. During each iteration we depict the base, which
gives the largest decrease in the total cost function by unit
decrease of its spare level, and decrease the spare level by
one unit. Thus the procedure in these steps is similar to
the steepest descent method. If no more cost decrease is
possible, then we stop and generate the current point as
a solution to the problem.

We illustrate the algorithm by the following example.
Consider a multi-echelon inventory system with two bases,
which operate only one type of item and a depot. The rele-
vant data is described in <Table 1>,

(Table 1> Data Example for the lNustration of the Algorithm

MNio | | G | M | My Ry | ey
Base 1 357 | 047 1073 | 10 29 204
Base 2 285 | 0.58 1029 | 10 33 203
17.11

A T R, B =N

Depot

The solution of the example, inventory levels satisfying
the minimum fill-rate at minimum cost, is summarized in
the third column of <Table 2>. The spare level and the
cost are decreased as the minimum fill-rate is decreased
until the minimum point is reached. But if the inventory
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level arrives at the minimum point, it remains there despite
a further decrease in the minimum fill-rate.

<Table 2> Qutput of the Algorithm for the Example

1T T 1S IMES(XISE CIHER AARNS T %X

k]

ain

103

and calculate the minimum inventory level for each type
of items at the base satisfying the specified minimum fill-rate.
The lower and upper bound for s;; is 0 and A7; in the
enumeration technique. The proposed algorithm is written

— - - i i i ++, i
Minimum Actual Optimal Optimal in Visual .Studlo 2008 C++. The experiments are perfor@ed
fill rate fill rate spare level cost on a Pentium IV 2.6 GHz dual CPU based IBM compatible
0.95 0.96(0.96) 8(7) 238.90(235.36) PC system.
0.90 0.90(0.91) 7(6) 219.16(209.76) The following <Table 3> and <Table 4>, show the input
0.85 0.90(0.91) 7(6) 219.16(209.76) data and experimental results for the cases where there are
0.80 0.81(0.81) 6(5) 209.39(194.05) 5 bases.
0.75 0.81(0.81) 6(5) 209.39(194.05)
0.70 0.81(0.81) 6(5) 209.39(194.05) (Table 3> Data for Base 5 with 3 Types of Item
0.65 0.81(0.81) 6(5) 209.39(194.05)
0.60 0.81(0.81) 6(5) 209.39(194.05) Ay | ooy o My | My | by | ey gy
Note) ‘Entry in parenthesis is for the base 2. 154 1°0.59 5010045 31202 0.61
Base 1 | 1.88 | 048 5 6.25 9 31 208 | 0.62
2,12 1 043 6 1154 6 31 211 | 0.68
1.73 | 0.51 5 7.73 7 32 198 | 0.62
4, Computationa| Experiments Base 2 | 1.59 | 047 | 4 | 472 8 31 | 208 | 0.62
1.04 | 0.43 6 6.79 7 28 195 | 0.64
. . Lo 0.73 | 0.57 3 9.82 6 29 199 | 0.68
The algorithm could be very effective by limiting the search Base 3 | 213 | 056 | 5 | 747 | 8 34 1 198 | 0.69
region using the properties described above. An extensive 216 1055 ] 3 |1098) 5 31 | 198 | 063
computational experiments for the proposed algorithm is per- L56 10531 5 976 9 301 209 1 0.65
I : - Base 4 | 2.07 | 048 4 442 6 31 207 | 0.64
ormed in order to test the accuracy and efficiency of the 216 1040 | 6 17451 7 | 20 | 194 | 066
proposed algorithm. For this purpose we compare the mini- 2151060 | 3 | 617 8 32 | 208 | 0.62
mum total expected cost and actual fill-rate calculated by Base 5 | 1441043 1 6 6141 5 | 28 4 198 | 0.64
. . . . 1.01 | 057 5 7.93 8 30 179 | 0.70
the algorithm with those obtained from a enumeration tech- s 11658
nique. An enumeration technique is to find the minimum Depot . B} 6 16:96 B} B} B} )
point of the cost function from lower bound to upper bound - - 7_11692] - - - -
<Table 4> Result for base 5 with 3 types of item
Cost fill-rate ing ti
: . - - Computing time lterations
Algorithm Enumeration Algorithm Enumeration (sec)
75.04 75.04 0.80 0.80
Base 1 151.30 151.30 0.79 0.79 0.04(0.12) 4(8)
105.87 105.87 0.85 0.85
114.13 114.13 0.81 0.81
Base 2 140.21 140.21 0.85 0.85 0.31(1.55) 4(22)
73.79 73.79 0.75 0.75
60.84 60.84 0.92 0.92
Base 3 155.40 155.40 0.83 0.83 0.96(6.59) 5(33)
87.69 87.69 0.70 0.70
111.18 111.18 0.79 0.79
Base 4 140.41 140.41 0.84 0.84 2.57(20.17) 7(47)
122.31 122.31 0.71 0.71
183.48 183.48 0.72 0.72
Base 5 76.04 76.04 0.74 0.74 4.65(49.78) 7(65)
78.03 78.03 0.74 0.74
- - 16.58 - - -
Depot - - 16.96 - - -
- - 16.92 - - -

Note) *Entry in parenthesis is for the enumeration technique.
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For the sensitivity analysis of cost function, show <Fi-
gure 1> and <Figure 2> that calculate cost function for
IMES with identical failure rates and different failure rates.
And show <Figure 3>, that is cost function when minimum
fill rate is set to 0.6.

For the quality of solution, all results of the proposed
algorithm are exactly matched to those obtained from the
enumeration technique. The number of iterations and the
CPU time for proposed algorithm range from 4~7 and from
0.04 to 4.65 seconds respectively as the number of base
is increased from 1 to 5. On the other hand, 8~65 iterations
and 0.12~49.78 seconds were needed to calculate the same
measures by using enumeration technique.

Expected
total cost

ol
0123450678 91011121314151617181920

Base 2

<Figure 1> Cost Function for a System with Identical
Failure Rates

1500

Expected
total cost
1000

Base 1

0
41516 1718 19 20

0123456789101112131
Base 2

<Figure 2> Cost Function for a System with Different
Failure Rates

of

200

1501

Expected
total cost

1000}

Base 1

10 11 12 13 14 15 16 17 18 19 20

Base 2

<Figure 3> Cost Function when Minimum Fill Rate is
Set to 0.6

5. Concluding Remarks

In this paper we developed an algorithm for IMES (Intell-
igent Multi-Echelon Systems) by using the queueing theory
and cost function analysis to calculate the spare inventory
level which satisfies a predetermined minimum fill-rate and
minimizes the total expected cost. In comparison with enu-
meration results, the proposed algorithm is quite accurate
and computationally efficient. With this approach we are
able to solve large problems quickly and accurately. For
further study, one can relax the assumption of no travel
times from the bases to the depot and vice versa. In addi-
tion, this model can be extended to the more general case
where the spares in a base can be transferred to another
if it has no spare to replace the failed item.
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