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Abstract
In call forecasting literature, both the seasonal autoregressive integrated moving average(ARIMA) type mod-

els and seasonal linear models have been popularly suggested as competing models. However, their parallel
comparison for the forecasting accuracy was not strictly investigated before. This study evaluates the accuracy of
both the seasonal linear models and the seasonal ARIMA-type models when predicting intra-day call arrival rates
using both real and simulated data. The seasonal linear models outperform the seasonal ARIMA-type models in
both one-day-ahead and one-week-ahead call forecasting in our empirical study.

Keywords: Seasonality, intra-day data, call centre arrival, seasonal linear model, seasonal ARIMA
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1. Introduction

Various call volume forecasting models have been analyzed by many scholars. As an early approach,
the autoregressive integrated moving average(ARIMA) models were applied to the daily call volume
prediction by Bianchi et al. (1993). Shortly thereafter, seasonal factors were considered to be an
important characteristic because multiple seasonal cycles were documented in most call arrivals. A
standard Box-Jenkins seasonal ARIMA-type model (an alternative to the pure ARIMA model) has
received significant attention ever since. In particular, many new call volume forecasting techniques
have been evaluated by the comparison with the seasonal ARIMA models in the literature. For ex-
ample, Tych et al. (2002) compared a dynamic harmonic regression model with a seasonal ARIMA
model. Taylor (2008) compared the seasonal ARIMA with dynamic harmonic regression, periodic
AR, and exponential smoothing for double seasonality. The seasonal ARIMA model has been popu-
larly suggested as a competing model in the call volume forecasting research as well as many other
seasonal time series data prediction studies (Taylor, 2003; Zhang and Qi, 2005).

The seasonal linear models or their modified versions seem to be challenging the seasonal ARIMA-
type models to the role of competing models in recent call prediction literature. Weinberg et al. (2007)
compared their Bayesian forecasting model with the seasonal linear models. Shen and Huang (2008)
compared their data-driven methods via singular value decomposition, the Bayesian model (Weinberg
et al., 2007), and the seasonal linear models with autoregressive intra-week effect.

Regardless of popular application of both models in call prediction literature, their parallel com-
parison for the forecasting accuracy was not rigorously examined before. This study is designed to
compare the forecasting accuracy of seasonal linear models with seasonal ARIMA-type models using
both real and simulated data. Each of these models is evaluated using the real intra-day 5-minute call
arrivals in a call center at a large American commercial bank. This data set includes several seasonal
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factors without trend. The seasonal linear models appear to perform better than the seasonal ARIMA-
type models in both one-day-ahead and one-week-ahead forecasting in this empirical study. To verify
the results in the real data analysis, models are reevaluated using the simulated call arrivals that mimic
the actual processes. Similar results are obtained in the simulated call arrivals.

The remainder of this article is arranged in an organized manner. In Section 2, we describe our
real call center arrival rates, as well as the simulated data. In Section 3, we explain the seasonal linear
models and the seasonal ARIMA-type models, and the model evaluation criteria are also introduced.
Section 4 summarizes the simulation and data analysis results. Our concluding remarks are provided
in Section 5.

2. Data

2.1. Real data

According to Shen and Huang (2008), the intra-day updating is advantageous over the inter-day one
due to the intra-day dependence. In particular, the prediction error can be substantially reduced if
appropriate intra-day updating is available. Hence, we apply the intra-day call arrivals. The intra-day
call center arrival rates of a retail banking division at a large U.S. commercial bank were examined
from April 14, 2003 to October 24, 2003; they were part of the data used in Weinberg et al. (2007).
The arriving calls were aggregated every 5 minutes for 24 hours a day, and the results showed that
the call centers were most active from 7:00 AM to 9:05 PM during weekdays. Following Weinberg
et al. (2007), we restricted our data set to this time frame. In our study, we observed 169 calls per
day over a five-day business week. Since the call center was closed briefly for a holiday, we missed
observations on one day. We accounted for the missed call arrivals on the holiday by utilizing the
call arrivals for the corresponding weekday in the two adjacent weeks; we averaged these numbers to
make the adjustment. This procedure was necessary for the seasonal ARIMA-type modeling due to
its recursive structure.

We applied the transformation scheme by Brown et al. (2005) to our real data analysis. They
suggested transforming the original call volume Ni j into yi j =

√
Ni j + 0.25 to provide variance stabi-

lization. According to their analysis, yi j is approximately normal as the arrival counts become larger.
Note that Ni j indicates the number of call arrivals on day i during the intra-day time interval [t j−1, t j],
where i = 1, 2, . . . , I and j = 1, 2, . . . , 169. For the ARIMA-type models, Ni j will be replaced with Nt,
where t = j + 169 × (i − 1).

2.2. Simulated data

Data sets are generated, which are mimicking the real call arrivals in the previous subsection. The
following double seasonal multiplicative model is used for data generation in the simulation analysis

yi j = S jWdi + ei j, (2.1)

where S j is the intra-day effect with j = 1, 2, . . . , 169, and Wdi is the intra-week effect with di =

1, 2, . . . , 5. Note that S j is obtained by averaging the real call arrivals for j, and the values for
S 1, S 2, . . . , S 169 will be provided upon request. W1 = 1.1129, W2 = 1.0067, W3 = 0.9477, W4 =

0.9480, W5 = 0.9845 are used in this study. The error term ei j is generated from a normal distribution,
N(0, σ2), with three levels of standard deviation: σ = 1, 5, 10. Due to the error term’s normality, we
do not have to transform the original data as we did in the real data analysis in the previous subsection.
Hence, we can have yi j = Ni j in the seasonal linear models, and can use Nt or yt instead of Ni j in the
ARIMA-type models.
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Figure 1: Samples of call arrivals for the real data and the simulated data with σ = 1(The symbols “+” and “o”
indicate the real and the simulated data, respectively)

Table 1: Paired t-test results for the difference series between the real data and the simulated data with
σ = 1, 5, 10

American
d1 d2 d3

mean 0.0098 −0.0080 −0.0821
std 21.6000 22.1710 23.7362

test-stat 0.0700 −0.0552 −0.5322

Same number of real data points is generated. Note that every set of 169 data points mimics
the 5-minute call arrivals per day. Figure 1 illustrates the comparison of the sample dynamics (845
time points) of the original real data and simulated data with σ = 1, where the symbols “+” and “o”
indicate the real and the simulated data, respectively. The simulated data seem to mimic the pattern of
the real data. The average and standard deviation of difference series between the simulated data and
real data are summarized in Table 1. Notations d1, d2, d2 represent the difference series between the
real data and the simulated data with σ = 1, 5, 10, respectively. To provide statistical evidences for
appropriate imitation of the simulated data, paired t-test results for the difference series are reported
under the normal assumption. Any significance from zero was not detected in these tests.

A similar seasonal multiplicative model was used in Zhang and Qi (2005) to generate seasonal
time series data. Unlike their model, we leave out the trend term since we could not detect signifi-
cant trend effects in our real call arrival data. Their model was restricted to only one seasonal factor,
whereas the model in this study extends to two seasonal factors: the intra-day and intra-week season-
ality. These two seasonal cycles have been employed in many call volume forecasting studies (Tych
et al., 2002; Taylor, 2003, 2010; Weinberg et al., 2007; Shen and Huang, 2008).



240 Myung Suk Kim

3. Models and Evaluation

3.1. The seasonal linear model

Weinberg et al. (2007) considered the linear additive models on yi j with seasonal variables and their
interaction as covariates due to the approximate normal property of yi j. In particular, they refer to the
linear additive models as seasonal linear models. The seasonal linear model by Weinberg et al. (2007)
is as follows:

(Model 1) yi j = µ + αdi + β j + δdi j + εi j,

where µ is a constant, and εi j ∼ N(0, σ2). Note that di indicates the weekday for day i. The αdi , β j

and δdi j indicate the day-of-week effect (intra-week effect), the time of day effect (intra-day effect),
and their interaction effect, respectively. This model is a type of regression model with categorical
independent variables.

In addition to these two seasonal cycles, we have considered one more seasonal component, the
intra-month effect, which is included in Models 2 and 3:

(Model 2) yi j = µ + αdi + β j + δdi j + ρmi + εi j,

(Model 3) yi j = µ + αdi + β j + δdi j + λwi + εi j,

where ρmi and λwi indicate the day-of-month effect and the week-of-month effect, respectively. Both
models indicate the intra-month effect. In particular, the day-of-month effect was considered in Gans
et al. (2003).

3.2. The seasonal ARIMA model

The multiplicative double seasonal ARIMA model can be written as

φp(B)ΦP1

(
BS 1

)
ΦP2

(
BS 2

)
(1 − B)d(yt − c) = θq(B)ΘQ1

(
BS 1

)
ΘQ2

(
BS 2

)
εt,

where c is a constant, εt is a white noise error term, and B is the back shift operator with Blyt =

yt−l. φp(B) and θq(B) indicate the autoregressive(AR) and moving average(MA) parts, respectively.
They are polynomial functions of orders p and q, respectively. ΦP1 (BS 1 ) and ΦP2 (BS 2 ) indicate two
seasonal factors related to the AR part; ΘQ1 (BS 1 ) and ΘQ2 (BS 2 ) indicate two seasonal factors related
to the MA part. P1, P2, Q1 and Q2 indicate the order of corresponding polynomial functions, and
s1 and s2 indicate the length of two seasonal cycles. Note that the ARIMA model is reduced to the
autoregressive moving average(ARMA) model if d = 0 (if there is no differencing). A model fitted
with differencing (d = 1) would be useful if there is evidence of any significant trend effects. We
have considered a model fitted with differencing (d = 1) as well a model with no differencing. In this
study, the double seasonal ARMA model and the double seasonal ARIMA model are called Model 4
and Model 5. The transformation yt =

√
Nt + 0.25 is applied to the real data analysis for procuring

the normality, whereas yt = Nt is applied to the simulated case.
We have tried to include the intra-month effect in the seasonal ARIMA-type models, but there

were some difficulties. First of all, the length of a month measured by days or weeks varies with the
month. Hence, one specific value corresponding to the length of the intra-month effect could not be
applied to the model. Furthermore, failures tended to occur in running the computer program due to
the considerable memory capacity requirement if more than two seasonal cycles are employed in the
model. Therefore, no more than two seasonal factors are utilized in the ARIMA-type models.
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3.3. Model evaluation

In our study, the forecasting accuracy is evaluated by computing the prediction of the root mean square
error(RMSE) and the average percentage error(APE) for each day i; these are written as

RMSEi =

1
J

J∑
j=1

(
Ni j − N̂i j

)2


1
2

and APEi =
100

J

J∑
j=1

∣∣∣Ni j − N̂i j

∣∣∣
Ni j

,

where N̂i j is the predicted call arrival rate, and J = 169. For the ARIMA-type models, Ni j and N̂i j

have been replaced with Nt and N̂t, respectively. These criteria have been applied in Weinberg et al.
(2007) and Shen and Huang (2008). One-day-ahead forecasting performance is basically examined.
In practice the forecasted call arrival rates are utilized for more than one-day-ahead scheduling and
the staffing of a call centre; in addition, a one-week-ahead prediction is also considered.

4. Results

4.1. Real data analysis

The prediction accuracy of five models is evaluated in one-day-ahead and one-week-ahead forecast-
ing. Historical data from April 14, 2003 to August 1, 2003 were applied for the model selection. The
next-day and the next-week 5-minute call arrival rates are forecasted as the unit of a day using the
selected models. Note that the term next week indicates five days ahead, since our data set defines
five days as a week. The forecasting period includes August 4, 2003 to October 24, 2003. Hence, the
number of prediction days is 60 days and 56 days for one-day-ahead forecasting and one-week-ahead
forecasting, respectively. The historical data set or in-sample data set is updated daily by updating the
next day-level forecasting evaluation. Hence, the number of in-sample data should be same.

For the seasonal ARIMA-type modeling, we considered double seasonality such as intra-day and
intra-week cycles. Therefore, we used s1 = 169 and s2 = 845. Their corresponding periods indicate
the lengths of a day and a week. For the model’s lag order selection, all maximum likelihood estimates
were requested to be significant at level 5%. Insignificant lags were removed from the model. Addi-
tionally, the Schwarz Bayesian criterion(SBC) was applied to the model selection. Since the evidence
of trend effect was not detected in the unit-root tests, a model with no differencing considered. The
selected final model is the double seasonal ARMA model or Model 4, based on the in-sample real
data and is written as(

1−φ1B−φ2B2
) (

1−φ169B169
) (

1−φ845B845
)

(yt−c) = (1−θ1B)
(
1−θ169B169

) (
1−θ845B845

)
εt, (4.1)

where the coefficient estimates are reported in Table 2.
Although the evidence of unit root was not detected, we also considered the model with differenc-

ing (d = 1) for more complete comparison purposes. The final model is the double seasonal ARIMA
model or Model 5, which uses the in-sample data expressed as

(1−φ1B)
(
1−φ169B169

) (
1−φ845B845

)
(1−B) (yt−c) = (1−θ1B)

(
1−θ169B169

) (
1−θ845B845

)
εt, (4.2)

where the coefficient estimation results are presented in Table 2.
The distributions of the RMSE and APE for each model are summarized in Table 3, which indicate

the one-day-ahead and one-week-ahead forecasting results, respectively. M1–M5 represent Models
1–5, respectively. Q1, Q2 and Q3 indicate the first quarter, the second quarter, and the third quarter.
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Table 2: Parameter estimates in ARIMA-type models for real and simulated data
Model Lag, i 1 2 5 169 845

Real data φi 1.0192∗∗ −0.0329∗ 0.9975∗∗ 0.9972∗∗

Model 4 θi 0.7889∗∗ 0.9682∗∗ 0.9836∗∗

c 13.4838∗∗

Real data φi 0.0489∗∗ 0.9997∗∗ 0.9422∗∗

Model 5 θi 0.8006∗∗ 0.9831∗∗ 0.9078∗∗

c 0.0012
Simulation φi 1.2771∗∗ −0.0776∗∗ −0.2008∗∗ 0.9999∗∗ 0.9967∗∗

Model 4 θi 1.0939∗∗ −0.1438∗∗ 0.9939∗∗ 0.9118∗∗

(σ = 1) c 185.9270∗∗

Simulation φi 1.2644∗∗ −0.0655∗∗ −0.2004∗∗ 0.9999∗∗ 0.9882∗∗

Model 4 θi 1.1357∗∗ −0.1658∗∗ 0.9886∗∗ 0.9468∗∗

(σ = 5) c 189.3130∗∗

Simulation φi 1.2473∗∗ −0.0487∗∗ −0.2006∗∗ 0.9998∗∗ 0.9920∗∗

Model 4 θi 1.1473∗∗ −0.1713∗∗ 0.9871∗∗ 0.9716∗∗

(σ = 10) c 191.5248∗∗

Note: +: p < 0.01; *: p < 0.005; **: P < 0.0001

Table 3: Forecasting results of one-day-ahead and one-week-ahead for the real data

Model One-day-ahead One-week-ahead
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

(a) RMSE
mean 20.759 21.386 20.540 22.126 25.243 20.441 20.862 20.195 21.183 25.525
min 11.855 12.418 12.444 11.293 12.002 11.855 12.511 13.184 12.040 11.882
Q1 15.897 15.704 15.865 15.672 16.589 15.783 15.634 15.713 15.782 16.745
Q2 18.953 18.472 18.097 20.138 21.805 18.623 17.602 18.196 19.014 20.349
Q3 22.298 24.188 22.472 24.518 28.541 21.824 24.086 21.571 24.422 26.781
max 69.759 61.739 63.699 65.274 113.169 69.759 62.240 62.079 68.436 116.600

(b) APE
mean 9.393 9.653 9.205 10.174 11.842 9.392 9.563 9.241 10.086 12.314
min 5.666 6.236 6.286 5.379 5.801 5.666 6.194 6.390 5.456 5.637
Q1 7.355 7.290 7.334 7.652 7.951 7.224 7.152 7.270 7.812 8.025
Q2 8.453 8.096 8.020 9.366 9.633 8.128 8.009 8.010 9.142 9.630
Q3 9.886 10.637 9.840 10.721 14.202 9.886 10.705 9.915 10.879 13.083
max 29.943 27.302 27.571 34.616 55.246 29.943 27.370 27.900 35.109 59.020

The bold letters denote the smallest values among the models for each statistic regarding the RMSE
and APE. M4 documented the smallest minimum RMSE and APE among the five models. However,
the seasonal linear models seem to provide more accurate forecasting results than the seasonal ARMA
or ARIMA model by documenting smaller mean or median RMSE and APE in Table 3.

Note that M1 includes the same two cycles that M4 and M5 do. When comparing these three
models, M1 still provides the most accurate prediction results, as it documents the smaller mean and
median of RMSE and APE than M4 and M5. Among all five models, M3 provides the smallest mean
and median of RMSE and APE: The intra-month effect seems to be suspected. Similar results were
observed in Table 3. M3 provides the smallest mean RMSE and APE, and M1 provides a smaller mean
and median of RMSE and APE than M4 and M5. In summary, the seasonal linear models appear to
outperform the seasonal ARMA or ARIMA model. Note that a parallel comparison for one-day-ahead
and one-week-ahead forecasting accuracy is not available due to the different prediction sample sizes
for two cases.

4.2. Simulated data analysis
To confirm the results in the real data analysis, we conducted a simulation analysis. Using the data
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Table 4: Forecasting results of one-day-ahead and one-week-ahead for the simulated data
One-day-ahead One-week-ahead

(σ = 1) (σ = 5) (σ = 10) (σ = 1) (σ = 5) (σ = 10)
Model M1 M4 M1 M4 M1 M4 M1 M4 M1 M4 M1 M4

(a) RMSE
mean 1.035 1.274 5.166 6.808 10.358 12.270 1.036 1.227 5.177 6.661 10.369 12.051
min 0.933 1.011 4.531 4.715 9.043 8.824 0.933 0.961 4.531 4.726 9.043 8.796
Q1 1.003 1.080 4.979 5.288 10.066 10.454 1.003 1.050 4.979 5.227 10.107 10.454
Q2 1.035 1.159 5.121 6.104 10.418 11.389 1.037 1.167 5.127 6.070 10.418 11.274
Q3 1.061 1.384 5.290 7.686 10.705 12.761 1.065 1.258 5.313 6.745 10.705 12.500

Max 1.238 2.042 6.578 12.995 11.966 20.269 1.238 1.720 6.578 11.192 11.966 17.297
(b) APE

mean 0.530 0.628 2.661 3.341 5.446 6.205 0.529 0.601 2.662 3.246 5.439 6.107
min 0.421 0.496 2.188 2.492 4.287 4.483 0.421 0.467 2.188 2.391 4.287 4.533
Q1 0.502 0.560 2.534 2.768 5.047 5.442 0.502 0.538 2.534 2.715 5.047 5.455
Q2 0.532 0.594 2.646 3.198 5.450 6.103 0.532 0.592 2.646 3.215 5.395 6.095
Q3 0.556 0.664 2.803 3.677 5.767 6.800 0.556 0.657 2.811 3.475 5.767 6.697

Max 0.627 0.890 3.101 5.587 6.948 8.391 0.627 0.748 3.101 4.730 6.948 7.681

generation model in (2.1), we generated three simulation sets of same number of data points as that
of the real data. Each simulated data sets are obtained using three different values. Since the data
generating procedures do not include the intra-month effect, we did not consider M2 or M3. Moreover,
M5 was not considered since there were no trend effects in model (2.1). Therefore, we only compared
M1 and M4 in the simulation.

For the seasonal ARMA modeling, the SBC and the 5% significance level were applied to the final
model selection. The forms of the final models that were selected for the simulated data were similar
to (4.1) and (4.2), but there were some significant higher-order lags unlike the real data analysis case.
Maximum likelihood estimation results of M4 for three different σ values are reported in Table 2.

Table 4 summarizes the one-day-ahead and one-week-ahead forecasting results regarding the sim-
ulated data for three different σ values. Here, the seasonal linear model M1 is compared with the
seasonal ARMA model M4. Our results indicate that M1 tends to outperform M4 for all three σ
values. The means and medians of RMSE and APE of M1 were always smaller than those of M4.
Note again that the parallel comparison between the one-day-ahead and one-week-ahead forecasting
accuracy is not possible due to the different prediction sample sizes for the two cases.

5. Conclusion

The seasonal linear models challenge the seasonal ARIM-type models to the part of competing models
in call arrival prediction studies. However, their forecasting accuracy was not rigorously compared be-
fore. Therefore, this study compared the seasonal linear models with the seasonal ARMA or ARIMA
models in forecasting intra-day call center arrivals. Both the simulated data and the real data were
used to evaluate the forecasting models. The seasonal linear models are better than the competing
seasonal ARIMA-type models in this empirical analysis.

Regarding the simulation scheme, Curry (2007) pointed out that the ARIMA-type model is not
appropriate when the true dynamics are generated from a multiplicative time series model like (2.1)
due to the specification problems. As Zhang and Qi (2005) claimed that the multiplicative time series
models seem to be able to mimic real seasonal time series data. Their arguments appear to be plausible
in our study according to Figure 1 and Table 1.

Our study is limited to an empirical analysis; however, our results provide some possibility that
the seasonal linear models can compete with the seasonal ARIMA-type models for versatile seasonal
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time series data forecasting the underlying series include seasonality without trend. We expect that
the seasonal linear models will be more popularly applied to a wide range of future seasonal time
series data forecasting articles.

References

Bianchi, L., Jarrett, J. and Hanumara, R. C. (1993). Forecasting incoming calls to telemarketing
centers, Journal of Business Forecasting Methods and Systems, 12, 3–12.

Brown, L. D., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S. and Zhao, L. H. (2005).
Statistical analysis of a telephone call center: A queueing-science perspective, Journal of the
American Statistical Association, 100, 36–50.

Curry, B. (2007). Neural networks and seasonality: Some technical considerations, European Journal
of Operational Research, 179, 267–274.

Gans, N., Koole, G. and Mandelbaum, A. (2003). Telephone call centers: Tutorial, review, and
research prospects, Manufacturing and Service Operations Management, 5, 79–141.

Shen, H. and Huang, J. Z. (2008). Interday forecasting and intra-day updating of call center arrivals,
Manufacturing and Service Operations Management, 10, 391–410.

Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential
smoothing, Journal of the Operational Research Society, 54, 799–805.

Taylor, J. W. (2008). A comparison of univariate time series methods for forecasting intra-day arrivals
at a call center, Management Science, 54, 253–265.

Taylor, J. W. (2010). Exponentially weighted methods for forecasting intra-day time series with mul-
tiple seasonal cycles, International Journal of Forecasting, 26, 627–646.

Tych, W., Pedregal, D. J., Young, P. C. and Davies, J. (2002). An unobserved component model for
multi-rate forecasting of telephone call demand: The design of a forecasting support system,
International Journal of Forecasting, 18, 673–695.

Weinberg, J., Brown, L. D. and Stroud, J. R. (2007). Bayesian forecasting of an inhomogeneous Pois-
son process with applications to call center data, Journal of the American Statistical Association,
102, 1185–1198.

Zhang, G. P. and Qi, M. (2005). Neural network forecasting for seasonal and trend time series,
European Journal of Operational Research, 160, 501–514.

Received October 2010; Accepted January 2011




