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Abstract
In many cases, populations in the real world are composed of different subpopulations. Furthermore, in

addition to the heterogeneity in the lifetimes of items, there also could be the heterogeneity in the efficiency or
performance of items. In this case, the reliability measures should be defined in a different way. In this article, we
consider the mixture of stochastically ordered subpopulations. Efficiency based reliability measures are defined
when the performance of items in the subpopulations has different levels. Discrete and continuous mixing models
are studied. The concept of the association between the lifetime and the performance of items in subpopulations
is defined. It is shown that the consideration of efficiency can change the shape of the mixture failure rate dra-
matically especially when the lifetime and the performance of items in subpopulations are negatively associated.
Furthermore, the modelling method proposed in this paper is applied to the case when the stress levels of the
operating environment of items are different.
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1. Introduction

Most populations encountered in the real world are heterogeneous. In reliability context, items with
different quality may be produced due to, for example, defective resources and components, human
errors, unstable production environment, etc. In this case, two subpopulations of strong and weak
components usually constitute the mixture population (Jensen and Petersen, 1982). It is also well
known that the continuous mixture is an effective tool for modeling population heterogeneity due to a
randomly changing production environment and other causes of ‘random effects’ (Finkelstein, 2008).
Therefore, these models are important in various reliability engineering applications.

The mixture failure rate for two ordered subpopulations was intensively studied in the literature.
For instance, Gupta and Warren (2001) show that the mixture of two gamma distributions with increas-
ing failure rates (with the same scale parameter) can result either in the increasing mixture failure rate
or in the modified bathtub(MBT) mixture failure rate (it first increases and then behaves like a bath-
tub failure rate). Similar shapes occur for the mixtures of two Weibull distributions with increasing
failure rates (Jiang and Murthy, 1995). Navarro and Hernandez (2004) state that the mixture failure
rate of two truncated normal distributions, depending on parameters involved, can also be increasing,
BT(bathtub)-shaped or MBT-shaped. Block et al. (2003) give explicit conditions which describe the
possible shapes of the mixture failure rate for two increasing linear failure rates.

In many cases, the performance of items in the population may have different levels. In this case,
the reliability measures should be defined in a different way and the ageing property should be ob-
tained considering the efficiency of the items. In this article, we consider the mixture of stochastically
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ordered subpopulations, which is defined in terms of the ordering of failure rates of subpopulations.
Efficiency based reliability measures are defined for discrete and continuous mixing models. Fur-
thermore, the modelling method proposed in this paper is applied to the case when the operating
environments of items are different.

This paper is constructed as follows. In Section 2, we consider the case of discrete mixing model.
Performance based reliability measure for a subpopulation is defined and, based on it, the mixture
population failure rate function is obtained. The concept of the association between the lifetime
and the performance of items in subpopulations is defined and it is shown that the consideration
of the efficiency can change the shape of the mixture failure rate dramatically especially when the
lifetime and the performance of items in subpopulations are negatively associated. In Section 3, the
foregoing discussions are extended to the case of continuous mixing. In Section 4, the modelling
method discussed in the previous section is applied to the case when the stress levels of the operating
environment are different. In Section 5, some possible practical applications of the proposed methods
are proposed.

2. Discrete Mixing

We will consider the mixture of stochastically ordered subpopulations. Thus, for convenience, we
will call the two subpopulations ‘strong’ and ‘weak’ subpopulations. In this section, we consider the
case of n = 2 subpopulations (that can be generalized to the arbitrary finite n). Denote the lifetime
of a component from the strong subpopulation by T1 and its absolutely continuous Cdf, pdf and the
failure rate function by F1(t), f1(t) and λ1(t), respectively. Similarly, the lifetime, the Cdf, pdf and the
failure rate function of a weak component are T2, F2, f2(t) and λ2(t), accordingly. Formal definitions
of strong and weak subpopulations will be given after introducing the necessary notations. The initial
(t = 0) composition of our mixed population is as follows: the proportion of strong items is π, whereas
the proportion of weak items is 1 − π, which means that the distribution of the discrete frailty Z with
realizations 1 and 2 in this case is

π(z) =

{
π, z = 1,
1 − π, z = 2

and 1, 2, correspond to the strong and the weak subpopulations, respectively. The mixture (population)
survival function is

F̄m(t) = πF̄1(t) + (1 − π)F̄2(t).

Then the mixture (observed) failure rate is

λm(t) =
π f1(t) + (1 − π) f2(t)
πF̄1(t) + (1 − π)F̄2(t)

= π(t)λ1(t) + (1 − π(t))λ2(t),

where the time-dependent probabilities are

π(t) =
πF̄1(t)

πF̄1(t) + (1 − π)F̄2(t)
, 1 − π(t) =

(1 − π)F̄2(t)
πF̄1(t) + (1 − π)F̄2(t)

.

Assume now that the populations are ordered (and therefore, the weak and the strong subpopulations
are defined accordingly) in the sense of the failure rate ordering:

λ1(t) ≤ λ2(t), t ≥ 0.
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The above reliability measures are valid only when the ‘efficiency’ of items between different
subpopulations is the same. However, we consider the situation when “the larger (or smaller) values
of Z correspond to the lower efficiency of items”. For example, when compared with a strong item,
a weak item’s efficiency is 0.5 times of that of a strong component, which implies that it takes twice
the time length for a weak item to perform the same amount of work as a strong item does. In this
situation, for a strong item, it takes 1 unit of time to perform 1 unit amount of work, whereas, for a
weak item, it takes 2 units of time to perform 1 unit amount of work. That is, the absolute lifetime,
in this situation, has little meaning. Therefore, in this heterogeneous setting, different time scales
depending on the corresponding subpopulations need to be adopted.

Now, the above reasoning is mathematically formulated. Let e1 represent the efficiency of the
subpopulation with frailty Z = 1 (strong subpopulation) and let e2 be that of subpopulation with
frailty Z = 2 (weak subpopulation). Without a loss of generality, in the following discussion, we may
set e1 ≡ 1 unless otherwise specified. This implies that, if a strong item operates for t unit of time,
then it performs t unit amount of work, whereas, a weak item performs e2 · t unit amount of work
for the same time period. If, for example, the item under consideration is a production system, then
e2 = 0.5 implies that the number of products which a weak system produces corresponds to only 50%
of that a strong system produces for the same time length.

Practically, e2 can be estimated in the following manner. The amount of work performed by the
weak item yi (unit amount of work) is observed at each fixed time point ti, i = 1, 2, . . . ,m, t1 < t2 <
· · · < tm. Then based on the observation (yi, ti), i = 1, 2, . . . ,m, a simple linear regression model
E(y) = e2 · t which passes through the origin can be fitted. Then the estimator for e2 can be obtained
without difficulty.

Now, the concept of the association between the subpopulation lifetime and the corresponding
efficiency is defined in the following definition.

Definition 1. (Association between the Lifetime and the Performance: Discrete Case)
For the case of n = 2, if e1 > e2 (e1 < e2), then the lifetime and the efficiency are positively

(negatively) associated.

The above efficiency concepts are defined ‘relatively’ and thus there should be a baseline. As we
set e1 ≡ 1, the efficiency of the strong subpopulation is the ‘baseline’. Under this setting, the time
needed for a strong item to perform t unit amount of work is t and, on the other hand, that for a weak
item is t/e2. Therefore, the probability that an item from subpopulation i will perform t unit amount
of work without failure is defined by

F̄C(t, i) = P(Ti > ci(t)) = F̄i(ci(t)) = exp
{
−

∫ ci(t)

0
λi(u)du

}
, (2.1)

where ci(t) ≡ (1/ei)t, i = 1, 2. Now, ci(t) can be interpreted as the ‘transformed time scale’ for
the subpopulation i, i = 1, 2, that is, the lifetime of ci(t) corresponds to the lifetime which yields
t unit amount of work, i = 1, 2. Thus the distribution in (2.1) can be understood as the lifetime
distribution defined in the transformed time scale. As the distribution in (2.1) is a lifetime distribution,
the corresponding failure rate function can be defined as

λC(t, i) ≡
fC(t, i)
F̄C(t, i)

, (2.2)
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where fC(t, i) = −dF̄C(t, i)/dt, i = 1, 2. Then the failure rate in (2.2) can be interpreted via:

λC(t, i) · ∆t ≈P
(
The item will fail during working additional ∆t

unit amount of work |The item has worked t unit amount of work).

Then the mixture survival function based on the transformed time scale is given by

F̄mC(t) = πF̄C(t, 1) + (1 − π)F̄C(t, 2),

and the mixture (observed) failure rate is

λmC(t) = πC(t)λC(t, 1) + (1 − πC(t))λC(t, 2), (2.3)

where

λC(t, i) =
fC(t, i)
F̄C(t, i)

= c′i(t)λi(ci(t)), i = 1, 2

and the time-dependent probabilities are

πC(t) =
πF̄C(t, 1)

πF̄C(t, 1) + (1 − π)F̄C(t, 2)
, 1 − πC(t) =

(1 − π)F̄C(t, 2)
πF̄C(t, 1) + (1 − π)F̄C(t, 2)

.

Observe that if the lifetime and efficiency are positively associated and the failure rate functions of the
subpopulations are non-decreasing, then the stochastic order between the lifetimes of the subpopula-
tions is preserved as c1(t) < c2(t) and c′2(t) > 1. On the other hand, if the lifetime and efficiency are
negatively associated, then the stochastic order is not necessarily preserved.

Proposition 1. If the lifetime and efficiency are positively associated and the failure rate functions
of the subpopulations are non-decreasing, then the stochastic order between the lifetimes of the sub-
populations is preserved under the transformed time scale.

This result implies that when the lifetime and efficiency are negatively associated, the efficiency based
approach can change the shapes of the mixture failure rate dramatically. See the following example
for detailed illustrations.

Example 1. Suppose that λ1(t) = λ1, t ≥ 0 and λ2(t) = λ2, t ≥ 0, λ2 > λ1. Then the ordinary
mixture failure rate λm(t) is obtained by

λm(t) = π(t)λ1(t) + (1 − π(t))λ2(t)

=
πe−λ1t

πe−λ1t + (1 − π)e−λ2t λ1 +
(1 − π)e−λ2t

πe−λ1t + (1 − π)e−λ2t λ2,

which is a decreasing function. Now λC(t, 1) ≡ λ1(t) and, as c2(t) = (1/e2)t,

λC(t, 2) ≡ c′2(t)λ2(c2(t)) =

(
1
e2

)
λ2, t ≥ 0.

Therefore, λmC(t) in (2.3) is obtained by

λmC(t) =
πe−λ1t

πe−λ1t + (1 − π)e
−

(
λ2
e2

)
t
λ1 +

(1 − π)e
−

(
λ2
e2

)
t

πe−λ1t + (1 − π)e
−

(
λ2
e2

)
t

(
λ2

e2

)
.
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Figure 1: λm(t) and λmC(t)

(Case I: Positive Association) Let λ1 = 1.0, λ2 = 5.0 and e2 = 0.5. In this case, the graphs for
λm(t) and λmC are given in Figure 1. In this case, both of mixture failure rates decrease even though
each subpopulation has a constant failure rate. Furthermore, it can be seen that they approach the
failure rates of stronger subpopulations, respectively. This phenomenon can be well explained by the
property that the weakest items are dying out first.

(Case II: Negative Association) Let λ1 = 1.0, λ2 = 5.0 and e2 = 5.0. In this case, λC(t, 2) =

(1/e2)λ2 = 1.0 and therefore λmC(t) = 1.0, t ≥ 0. Thus, in this case, the consideration of the
efficiency dramatically changes the shapes of the mixture failure rates(DFR to CFR).

Remark 1. The setting with two subpopulations discussed in this section can be straightforwardly
extended to the case of n > 2 stochastically ordered subpopulations. Let Fi(t), fi(t) and λi(t) be the
Cdf, pdf and failure rate function of subpopulation i, respectively, i = 1, 2, . . . , n. Furthermore, let
πi be the proportion of the ith subpopulation, i = 1, 2, . . . , n, where

∑n
i=1 πi = 1. Now, as before, the

subpopulations are assumed to be stochastically ordered as:

λ1(t) ≤ λ2(t) ≤ · · · ≤ λn(t).

Then it can be easily verified that the mixture (observed) failure rate is given by

λm(t) =

n∑
i=1

πi(t)λi(t),

where the time-dependent probabilities are

πi(t) =
πiF̄i(t)∑n

j=1 π jF̄ j(t)
, i = 1, 2, . . . , n.

Defining the efficiency of subpopulation i, ei, and ci(t) ≡ (1/ei)t, i = 1, 2, . . . , n, the corresponding
survival function F̄C(t, i) and the failure rate function λC(t, i) under the transformed time scale can be
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similarly defined. Then, as before, the mixture (observed) failure rate on the transformed time scale
is given by

λmC(t) =

n∑
i=1

πC(t, i)λC(t, i),

where

λC(t, i) ≡ c′i(t)λi(ci(t))

and the time-dependent probabilities are

πC(t, i) =
πiF̄C(t, i)∑n

j=1 π jF̄C(t, j)
, i = 1, 2, . . . , n.

3. Continuous Mixing

Now we consider the continuous mixing case. We assume the following heterogeneous structure:

F̄m(t) =

∫ ∞

0
F̄(t, z)π(z)dz, Fm(t) =

∫ ∞

0
F(t, z)π(z)dz, fm(t) =

∫ ∞

0
f (t, z)π(z)dz, (3.1)

where F(t, z) and f (t, z) are the Cdf and the pdf of subpopulations indexed by the frailty parameter Z
and π(z) is the pdf of Z with support in [0,∞). The general support [a, b), 0 ≤ a < b ≤ ∞, can be
considered as well. Then the mixture (the observed or the population) failure rate λm(t) is defined as

λm(t) =

∫ ∞
0 f (t, z)π(z)dz∫ ∞
0 F̄(t, z)π(z)dz

=

∫ ∞

0
λ(t, z)π(z|t)dz, (3.2)

where the conditional density (on condition that the item did not fail in [0, t)) is

π(z|t) ≡ π(z)
F̄(t, z)∫ ∞

0 F̄(t, z)π(z)dz
.

Let our subpopulations be ordered in the sense of the failure rate ordering

λ(t, z1) ≤ λ(t, z2), z1 < z2, ∀z1, z2 ∈ [0,∞), t ≥ 0,

and the efficiency function of the subpopulation with frailty Z = z be ez.
Now, as in the case of the discrete case, the association between the subpopulation lifetime and

the corresponding efficiency can be defined as follows.

Definition 2. (Association between the Lifetime and the Performance: Continuous Case)
For the case of continuous mixing model, if ez1 > ez2 , for any z1 and z2 such that z1 < z2 (ez1 < ez2 ,

for any z1 and z2 such that z1 < z2), then the lifetime and the performance are positively (negatively)
associated.

As in the Discrete Case, in the following discussions, we assume that the baseline subpopulation
is the strongest one unless otherwise specified. Thus we let e0 = 1. Now we define the ‘transformed’
time scales for the subpopulations:

cz(t) ≡
(

1
ez

)
t, z ≥ 0, t ≥ 0.
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Then the survival function for the subpopulation with Z = z based on the transformed time scale is

F̄C(t, z) = exp
{
−

∫ cz(t)

0
λ(u, z)du

}
,

where λ(u, z) = f (u, z)/F̄(u, z), and the corresponding failure rate is given by

λC(t, z) =
fC(t, z)
F̄C(t, z)

= c′z(t)λ(cz(t), z),

where fC(t, z) = −∂F̄C(t, z)/∂t. Then

F̄mC =

∫ ∞

0
F̄C(t, z)π(z)dz, FmC(t) =

∫ ∞

0
FC(t, z)π(z)dz, fmC(t) =

∫ ∞

0
fC(t, z)π(z)dz

and λmC(t) is defined as

λmC(t) =

∫ ∞
0 fC(t, z)π(z)dz∫ ∞
0 F̄C(t, z)π(z)dz

=

∫ ∞

0
λC(t, z)πC(z|t)dz, (3.3)

where the conditional density (on condition that the item did not fail in [0, t)) is

πC(z|t) ≡ π(z)
F̄C(t, z)∫ ∞

0 F̄C(t, z)π(z)dz
.

As the failure rate under the transformed time scale is given by λC(t, z) = c′z(t)λ(cz(t), z), the result
given in Proposition 1 still holds for the continuous mixing case. Thus, as in the discrete case, when
the lifetime and efficiency are negatively associated, the efficiency based approach can change the
shapes of the mixture failure rate completely. See also the next examples for more details.

Example 2. Suppose that λ(t, z) = zλ, t ≥ 0, where λ is a constant and Z is exponentially distributed
with parameter θ. Then by direct integration in (3.2):

λm(t) =

∫ ∞
0 zλ exp{−zλt}θ exp{−θz}dz∫ ∞

0 exp{−zλt}θ exp{−θz}dz
=

λ

θ + λt
,

which is a decreasing function. Now, as λC(t, z) = c′z(t)λ(cz(t), z) = (z/ez)λ, λmC(t) in (3.3) cannot be
generally obtained in a closed form.

(Case I: Positive Association) Let λ = 1.0, θ = 0.5, and ez = 1/(z + 1), z ≥ 0. In this case, the graphs
for λm(t) and λmC(t) are given in Figure 2.

(Case II: Negative Association) Let λ = 1.0, θ = 0.5, and ez = exp{z}, z ≥ 0. In this case, the graphs
for λm(t) and λmC(t) are given in Figure 3.

In the following example, as in the discrete case, it can be seen that the consideration of the
efficiency can change the shapes of the mixture failure rates dramatically.

Example 3. Consider the truncated extreme value distribution (Gompertz) defined in the following
way:

F̄(t, z) = exp{−zk(exp{t} − 1)}, t ≥ 0,
λ(t, z) = zk exp{t}, z ≥ 0, t ≥ 0,
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Figure 2: λm(t) and λmC(t)
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Figure 3: λm(t) and λmC(t)

where k > 0 is a constant. Let Z be exponentially distributed with parameter θ. Direct integration
gives ∫ ∞

0
f (t, z)π(z)dz =

∫ ∞

0
zk exp{−zk(exp{t} − 1)}θ exp{−θz}dz

=
θk exp{t}
ω2 ,

where ω = k exp{t} − k + θ and∫ ∞

0
F̄(t, z)π(z)dz = θ

∫ ∞

0
exp{−ωz}dz =

θ

ω
.
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Figure 4: λm(t) and λmC(t)

Eventually, using definition (3.2):

λm(t) =
k exp{t}
ω

= 1 +
k − θ

k exp{t} − k + θ
.

Let k < θ. Then λm(t) is monotonically increasing asymptotically converging to 1. Thus the baseline
failure rate k exp{t} and the mixture failure rate λm(t) are increasing. Let k = 0.5, θ = 1.0 and
ez = exp{z}, z ≥ 0. In this case, the graphs for λm(t) and λmC(t) are given in Figure 4.

4. Application to the Modeling of Environmental Effects

In this section, we consider the application of the method of modeling efficiency based lifetime dis-
tributions studied in the previous section. In many instances, produced items are operated in different
environmental stress levels. Thus, in this case, even though the baseline distribution is the same, their
performances in field operation could be quite different and, accordingly, the environmental effect
should be incorporated into the modeling of lifetime distribution. We discuss this topic in this section.
For a proper formulation of the problem, we need to understand the modeling method commonly used
in accelerated life tests(ALT).

Accelerated life tests are frequently used in practice to obtain timely information on the life dis-
tribution or performance over time of highly reliable products in an affordable amount of testing time.
Test units are used more frequently than usual or are subjected to higher than usual levels of stress
or stresses like temperature and voltage. Then the information obtained from the test performed in
higher level of environment is used to predict actual product performance in usual level of environ-
ment. Nelson (1990) provides an extensive and comprehensive source for background material, prac-
tical methodology, basic theory, and examples for accelerated testing. Meeker and Escobar (1993) is
also a good review paper of recent research and current issues in ALT. Denote random variable X the
lifetime of a component used in the usual level of environment and F(t) the distribution function of X.
We assume that X is an absolutely continuous nonnegative random variable and thus the distribution
has no probability mass at infinity. Let f (t) be the probability density function of X. Its failure rate
function λ(t) is then given by λ(t) = f (t)/F̄(t), where F̄(t) is the survival function of X. Also denote
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random variable XA the lifetime of a component operated in the accelerated level of environment
and FA(t), λA(t) the corresponding distribution function and failure rate function, respectively. The
‘Accelerated Failure Time(AFT)’ regression model is the most widely used parametric failure time
regression model in ALT. Under this model higher stress has the effect of shrinking time through a
scale factor. This can be expressed as

FA(t) = F(ρ · t), t ≥ 0, (4.1)

where ρ is a constant which depends on the accelerated stresses. As given in Section 3 of Meeker and
Escobar (1993), a more general model can be expressed as

FA(t) = F(ρ(t)), t ≥ 0, (4.2)

where ρ(t) depends on the accelerated environment. Since the accelerated environment gives rise to
higher stresses than the usual environment, reasonable assumptions are ρ ≥ 1 for the model (4.1) and
ρ(t) ≥ t for all t ≥ 0 and ρ(0) = 0 for the model (4.2). Furthermore we assume that ρ(t) in the model
(4.2) is strictly increasing, continuous and differentiable. Then, the models given in (4.1) and (4.2)
imply that XA ≤st X. Here, the notation “≤st” denotes the usual stochastic order, that is, we say that
Z1 is said to be smaller than Z2 in the usual stochastic order denoted as if G2(t) ≤ G1(t), for all t ≥ 0,
where G1(t) and G2(t) are the distribution functions of Z1 and Z2, respectively. From the model (4.2),
the failure rate function in accelerated environment is given by

λA(t) =
ρ′(t) f (ρ(t))
1 − F(ρ(t))

= ρ′(t)λ(ρ(t)).

Now we discuss our problem. Suppose that items produced constitute a homogeneous population.
Suppose further that these items are operated in different stress levels of environment. Let the lifetime,
distribution function, survival function, pdf and failure rate function of items operated in the “lowest
stress level” of environment be denoted by F(t), F̄(t), f (t) and λ(t) (baseline distribution). Let this
stress level correspond to the frailty variable Z = 0. In this case, the stress levels under which the
items are operating can be regarded as continuous and these levels can be indicated using continuous
variable Z > 0. In this case, the larger value of Z should correspond to the severer stress level of
environment. Then applying the reasoning in ALT model, the distribution function which corresponds
to the stress level with frailty Z = z can be expressed as

F(t, z) = F(ρ(t, z)), z ≥ 0, t ≥ 0. (4.3)

In model (4.3), ρ(0, z) = 0, ρ(t, 0) = t, ρ(t, z) ≥ t for all z ≥ 0, t ≥ 0. Furthermore, ρ(t, z) is strictly
increasing in z ≥ 0 and t ≥ 0. Then, when the pdf of the frailty parameter Z is given by π(z), the
lifetime distribution of items in field operation can be expressed using (3.1) and (3.2).

Example 4. Suppose that the baseline distribution is a Weibull distribution with λ(t) = 2t. Let Z
be exponentially distributed with parameter θ and ρ(t, z) =

√
z + 1 · t, z ≥ 0, t ≥ 0. In this case,

F(t, z) = F(ρ(t, z)) = 1 − exp{−(z + 1)t2} and λ(t, z) = 2(z + 1)t. Then

π(z|t) ≡ π(z)
F̄(t, z)∫ ∞

0 F̄(t, z)π(z)dz
=

(
θ + t2

)
exp

{
−

(
θ + t2

)
z
}
, z ≥ 0.

Thus,

λm(t) =

∫ ∞

0
λ(t, z)π(z|t)dz = 2t

(
1

θ + t2 + 1
)
, t ≥ 0.
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5. Concluding Remarks

In this paper, efficiency based reliability measures were defined when the performance of items in
the mixture population has different levels. Discrete and continuous mixing models were considered.
The concept of the association was defined and it was shown that the shape of the mixture failure
rate changes dramatically when the negative association between the lifetime and the performance
of items in the subpopulations exists. Useful applications to the cases with different stress levels of
operating environment were also discussed.

In the reliability literature, the topics on burn-in procedure, warranty policy and maintenance
policy have been discussed based on the ordinary reliability measures. However, as shown in this
article, when the performance of items in subpopulations has different levels, the reliability measures
should be defined in a different way and the obtained ageing property can be completely different.
Therefore, in this case, the studies on burn-in procedure, warranty policy and maintenance policy
should be done based on the reliability measures defined in this paper. These could be topics to be
covered in future studies.
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