DOI QR코드

DOI QR Code

The Effect of Pitch-to-Diameter Ratio on Natural Convection Heat Transfer of Two In-Line Horizontal Cylinders

나란히 수직으로 배열된 두 개의 수평관에서 피치-직경비에 따른 자연대류 열전달 영향

  • Chae, Myeong-Seon (Dept. of Energy Engineering, Applied Radiological Science Research Institute, Jeju Nat'l Univ.) ;
  • Kang, Gyeong-Uk (Dept. of Energy Engineering, Applied Radiological Science Research Institute, Jeju Nat'l Univ.) ;
  • Chung, Bum-Jin (Dept. of Energy Engineering, Applied Radiological Science Research Institute, Jeju Nat'l Univ.)
  • Received : 2010.12.15
  • Accepted : 2011.01.19
  • Published : 2011.04.01

Abstract

Natural convection heat transfer experiments from two parallel horizontal cylinders were performed varying the Pitch-to-Diameter ratio (P/D) of 1.02-9 at Sc of 2,014 to 8,334 and $Ra_D$ of $1.5{\times}10^8$ to $4.5{\times}10^{10}$. Mass transfer experiments that are analogous to the heat transfer experiments were performed using copper electroplating system. In all cases, the measured heat transfer rates for the lower cylinder agreed well with the existing heat transfer correlations developed from a single cylinder. For laminar flows, the measured heat transfer rates of the upper cylinder were less than those of the lower cylinder at P/D less than about 1.5. However, as the P/D increased, the heat transfer rates of the upper cylinder increased. For turbulent flows, the heat transfer rates of the upper cylinder were considerably similar to those of the lower cylinder when the P/D is approximately unity. In contrast, as the P/D increased, the heat transfer rates of the upper cylinder were always higher than those of the lower cylinder.

수평으로 놓인 두 개의 원형관(Cylinder)에 대하여 Sc 수를 2,014~8,334, $Ra_D$ 수를 $1.5{\times}10^8{\sim}4.5{\times}10^{10}$, 두 수평관의 피치-직경비를 1.02~9로 변화시키면서 자연대류 열전달 실험을 수행하였다. 유사성개념을 이용하여, 열전달 실험을 대신하여 황산-황산구리 수용액의 전기도금계를 이용한 물질전달 실험을 수행하였다. 실험결과 하단 수평관의 열전달 계수는 단일 수평관에 대한 상관식과 일치하였다. 층류에서 상단 수평관의 열전달은 이격된 거리가 수평관 지름의 1.5배 이하일 경우 하단 수평관의 열전달계수 보다 낮게 측정되었고, 그 이상에서는 높게 측정되었다. 그러나 난류에서는 두 수평관의 이격된 거리가 1에 가까울 경우에도 상단과 하단의 수평관의 열전달계수가 유사한 것으로 나타났으며, 이격 거리가 멀어지면 상단 수평관의 열전달계수가 하단의 그것보다 높은 것으로 나타났다.

Keywords

References

  1. Yuncu, H. and Batta, A., 1994, "Effect of Vertical Separation Distance on Laminar Natural Convection Heat Transfer over Two Vertically Spaced Equitemperature Horizontal Cylinders," Applied Scientific Research, Vol. 52, pp. 259-277. https://doi.org/10.1007/BF00853953
  2. Smith, A. F. J. and Wragg, A. A., 1974, "An Electrochemical Study of Mass Transfer in Free Convection at Vertical Arrays of Horizontal Cylinders," Journal of Applied Electrochemistry, Vol. 4, No. 3, pp. 219-228. https://doi.org/10.1007/BF01637231
  3. Sparrow, E. M. and Niethammer, J. E., 1981, "Effect of Vertical Separation Distance and Cylinderto-Cylinder Temperature Imbalance on Natural Convection for a Pair of Horizontal Cylinders," Trans. of the ASME, Vol. 103, pp. 638-644. https://doi.org/10.1115/1.3244520
  4. Corcione, M., 2005, "Correlating Equations for Free Convection Heat Transfer from Horizontal Isothermal Cylinders Set in a Vertical Array," Int. J. of Heat and Mass Transfer, Vol. 48, No. 17, pp. 3660-3673. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.010
  5. Misumi, T., Suzuki, K. and Kitamura, K., 2003, "Fluid Flow and Heat Transfer of Natural Convection around Large Horizontal Cylinders: Experiments with Air," Heat Transfer-Asian Research, Vol. 32, No. 4, pp. 293-305. https://doi.org/10.1002/htj.10080
  6. McAdams, W. H., 1954, Heat Transmission, 3rd ed., McGraw-Hill, New York, pp. 175-177.
  7. Morgan, V. T., 1975, "The Overall Convective Heat Transfer from Smooth Circular Cylinders, in: T. F. Irvine Jr, J. P. Hartnett (Eds.)," Advance in Heat Transfer, Academic Press, New York, Vol. 11, pp. 199-210. https://doi.org/10.1016/S0065-2717(08)70075-3
  8. Churchill, S. W. and Chu, H. S., 1974, "Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder," Int. J. Heat Mass Transfer, Vol. 18, pp. 1049-1053.
  9. Merk, H. L. and Prins, J. A., 1954, "Thermal Convection in Laminar Boundary layers I, II, III," Appl. Sci. Res., Vol. 4, No. 11-24, pp. 195-206. https://doi.org/10.1007/BF03184951
  10. Marsters, G. F., 1972, "Arrays of Heated Horizontal Cylinders in Natural Convection," Int. J. of Heat and Mass Transfer, Vol. 15, No. 5, pp. 921-933. https://doi.org/10.1016/0017-9310(72)90231-1
  11. Heo, J. H. and Chung B. J., 2011, "Visualization of Natural Convection Heat Transfer on a Horizontal Cylinder using the Copper Electroplating System," Trans. of the KSME(B), Vol. 35, No. 1, pp.43-51. https://doi.org/10.3795/KSME-B.2011.35.1.043
  12. Kitamura, K., Kami-iwa, F. and Misumi, T., 1999, “Heat Transfer and Fluid Flow of Natural Convection around Large Horizontal Cylinders,” Int. J. of Heat and Mass Transfer, Vol. 42, pp. 4093-4106. https://doi.org/10.1016/S0017-9310(99)00079-4
  13. Bejan, A., 1994, "Convection Heat Transfer," 2nd., John Wiley & Sons, INC, New York, pp. 466-514.
  14. Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N. J.
  15. Selman, J. R. and Tobias, C. W., 1978, "Mass Transfer Measurement by the Limiting Current Technique," Adv. Chem. Eng., Vol. 10, pp. 211-318. https://doi.org/10.1016/S0065-2377(08)60134-9
  16. Ko, S. H., Moon, K. W. and Chung, B. J., 2006, "Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept," Nuclear Engineering and Technology, Vol. 38, pp. 251-258.
  17. Kang, K. U. and Chung, B. J., 2010, "The Effects of the Anode Size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiments in a Vertical Pipe," Trans. of the KSME(B), Vol. 34, No. 1, pp. 1-8. https://doi.org/10.3795/KSME-B.2010.34.1.1
  18. Fenech, E. J. and Tobias, C. W., 1960, "Mass Transfer by Free Convection at Horizontal Electrodes," Electrochemical. Acta, Vol. 2, No. 4, pp. 311-325. https://doi.org/10.1016/0013-4686(60)80027-8