DOI QR코드

DOI QR Code

Study on Creep Damage Model of 1Cr1Mo1/4V Steel for Turbine Rotor

1Cr1Mo1/4V 터빈 로터강의 크리프 손상 모델에 관한 연구

  • Choi, Woo-Sung (Power generation laboratory, KEPCO Research Institute) ;
  • Fleury, Eric (Materials and Devices Division, Korea Institute of Science and Technology) ;
  • Song, Gee-Wook (Power generation laboratory, KEPCO Research Institute) ;
  • Kim, Bum-Shin (Power generation laboratory, KEPCO Research Institute) ;
  • Chang, Sung-Ho (Power generation laboratory, KEPCO Research Institute)
  • Received : 2010.12.10
  • Accepted : 2011.01.21
  • Published : 2011.04.01

Abstract

It is well known that the dominant damage mechanisms in high-temperature steam turbine facilities such as rotor and casing are creep and fatigue damages. Even though coupling of creep and fatigue should be considered while predicting the life of turbine facilities, the remaining life of large steam turbine facilities is generally determined on the basis of creep damage because the turbines must generate stable base-load power and because they are operated at a high temperature and pressure for a long time. Almost every large steam turbine in Korea has been operated for more than 20 years and is made of steel containing various amounts of principal alloying elements nickel, chromium, molybdenum, and vanadium. In this study, creep damage model of 1Cr1Mo1/4V steel for turbine rotor is proposed and that can assess the high temperature creep life of large steam turbine facilities is proposed.

일반적으로 화력발전 터빈 로터나 케이싱과 같이 고온 고압에서 운전되는 설비의 경우 크리프 및 피로 손상이 주된 손상기구로 알려져 있다. 터빈 설비의 수명을 정확하게 예측하기 위해서 크리프 및 피로 손상 기구를 복합적으로 고려해야 하지만 500MW 급 대용량 터빈 설비의 경우 기저 부하를 담당하기 때문에 기동횟수가 많지 않고 고온에서 장시간 동안 안정적인 운전을 하므로 잔여수명을 결정할 때 크리프 수명을 주로 사용한다. 국내에서 20 년 넘게 운전되고 있는 대용량 터빈의 경우 대부분 니켈, 크롬, 몰리브덴, 바나듐 성분이 포함한 재료로 되어 있다. 본 논문에서는 대용량 터빈의 크리프 수명을 예측하기 위하여 1Cr1Mo1/4V 터빈 로터강에 대한 크리프 손상 모델을 제안하고자 한다.

Keywords

References

  1. Choi, W.S., Fleury, E. and Song, G.W., 2006,“Development of Life Prediction System for SteamTurbine Based on Viscoplastic Analysis,” KEPRIreport, pp.164-216.
  2. Bailey, R.W., 1935, “The Utilisation of Creep TestData in Engineering. Design,” Proceedings of the Instituteof Mechanical Engineering, Vol. 131, pp.131-349. https://doi.org/10.1243/PIME_PROC_1935_131_012_02
  3. Dieter, G.E., 1988, Mechanical Metallurgy, McGraw-Hill C., Third Ed.
  4. Evans, M., 2000, “Predicting Times to Low Strain fora 1Cr1MoV Rotor Steel Using a $6-{\theta}$ ProjectionTechnique,” Journal of Materials Science, Vol. 35, pp.2937-2948. https://doi.org/10.1023/A:1004770525118
  5. Graham, A. and Walles, K.F.A., 1955, “RelationshipsBetween Long and Short Time Creep and TensileProperties of a Commercial Alloy,” Journal of Iron steel Institue.
  6. Bendick, W. and Weber, H., 1989, “Analysis ofCreep Damage and Material Exhaustion on a PipeBend of 1/2Cr1/2Mo1/4V Steel,” VGB KRAFTWERKSTECHNKI 69, Num 9, pp.817-825.
  7. Ringel, M., Roos, E., Maile, K. and Klenk, A., 2005,“Constitutive Equations of Adapted Complexity forHigh Temperature Loading,” Proceedings of Creep &Fracture in High Temperature Components, pp. 638-647.
  8. Viswanathan, R., 1989, Damage Mechanisms andLife Assessment of High-Temperature Components,ASM International.
  9. Gandy, D., 2004, “Metallurgical Guidebook forSteam Turbine Rotors and Discs, Volume 2 : MaterialsProperty Database for HP-IP and LP Rotors,” EPRItechnical report, 1009766.
  10. Choi, W.S., Song, G.W., Kim, B.S., Hyun, J.S. andHeo, J.S., 2010, “Development and Application ofLife Assessment Guidelines for Fossil Fuel powerplant facilities in Korea,” Transactions of theKSME(A), Vol. 34, No. 9, pp.1265-1272. https://doi.org/10.3795/KSME-A.2010.34.9.1265
  11. Jung, W.T., Kong, Y.S. and Kim, S.J.,2009, “NewConsideration on Variability of Creep Rupture Dataand Life Prediction,” Transactions of the KSME(A),Vol. 33, No. 10, pp.991-1186.
  12. Yin, S.N., Kim, W.G., Ryu, W.S. and Yi, W., 2007,“Creep Life Prediction and Its Error Analysis by theTime Temperature Parameters and the MinimumCommitment Method,” Transactions of the KSME(A),Vol. 31, No. 2, pp.145-289.