Studies on Feed Formulation to Reduce Methane Emission and Optimal Rearing Density for Environmental-Friendly Hanwoo Production

친환경 한우 생산을 위한 메탄 저감용 사료 배합 및 적정 사육밀도에 관한 연구

  • Shin, Jong-Suh (College of Animal Life Science, Kangwon National University) ;
  • Choi, Byoung-Yang (College of Animal Life Science, Kangwon National University) ;
  • Kim, Mi-Jung (College of Animal Life Science, Kangwon National University) ;
  • Kim, Sung-Gi (College of Animal Life Science, Kangwon National University) ;
  • Ra, Changsix (College of Animal Life Science, Kangwon National University)
  • 신종서 (강원대학교 동물생명과학대학) ;
  • 최병양 (강원대학교 동물생명과학대학) ;
  • 김미정 (강원대학교 동물생명과학대학) ;
  • 김승기 (강원대학교 동물생명과학대학) ;
  • 라창식 (강원대학교 동물생명과학대학)
  • Received : 2011.10.10
  • Accepted : 2011.12.20
  • Published : 2011.12.30

Abstract

This study was conducted to analyze the mixing ratio of raw feed materials for the methane mitigation and also to identify the minimum rearing density for improving the productivity of beef calves as eco-friendly fodder. Raw materials used in this study for the formulation of feed for methane reduction were crushed corn and alfalfa along with other 21 species. In addition, to investigate the appropriate rearing density, 12 Hanwoo calves with average weight of 150 kg was selected and experiment was conducted for four months. Methane gas emission (Bo) is about 3-4 times less in TMR 4 compared to TMR 1, 2 and 3. Feed price calculated for TMR 4 ration was also affordable. In addition, all TMRs showed a normal ruminal pH. Disappearance rate was observed to be lower in TMR 4 as compared to TMR 1, 2 and 3, but methane production decreased by 24 to 37%. The result showed improved total body weight, average daily gain and feed conversion ratio in rearing low-density ($18m^2/head$), and general treatment ($9m^2/head$) compared to overcrowding treatment ($6m^2/head$). In addition, blood components (total protein, glucose, AST, ALT and GGT factors) involved in health and disease treatments and health-related nutrition metabolism are lower in the low-density and general treatment compared to the high density treatment. Postural development (development of body size) i.e., weight, height and width significantly increased in the low and general density treatment compared to high density treatment. Especially excellent improvement was observed in low-density treatment than the general treatment. Moisture content, colonic bacteria and coccidium are higher in low and high density treatments than in the general treatment. The adequacy for beef rearing density is considered to be more desirable in an area more than $6m^2/head$. In conclusion, present study suggests that possibility of methane reduction through adjusting mixed feed ration. Also, rearing density is also an important factor in the growth and development of beef calves.

본 연구는 친환경 한우생산을 위해 다양한 원료사료의 선택 및 구성비율 변경을 통해 메탄 저감용 사료배합비의 작성 및 적정 사육밀도에 관한 연구를 규명하기 위하여 실시하였다. 본 연구의 메탄 저감용 사료배합에 활용한 원료사료는 파쇄 옥수수와 알팔파 외 21종이었다. 또한 적정 사육밀도를 조사하기 위한 공시동물은 평균 체중 150 kg의 한우 송아지 12두를 선정하여 4개월간 실험을 수행하였다. TMR 1, 2, 3에 비해 TMR 4에서 약 3~4배정도 낮은 메탄가스 발생량을 보였으며, 사료가격에서도 저렴한 결과를 보였다. TMR 4는 TMR 1, 2 및 3에 비해 건물 소실율에서 낮은 경향을 보였으며, 메탄생성량은 24~37%정도 감소하는 결과를 보였다. 한편, 한우 육성우의 적정 사육밀도 실험에서 저밀도 ($18m^2/head$) 및 일반 처리구 ($9m^2/head$)는 과밀도 처리구 ($6m^2/head$)에 비해 총 증체량, 일당증체량 및 사료요구율이 개선되는 결과를 보였다. 또한 건강과 질병에 관련된 혈액성분에서 저밀도 및 일반 처리구는 영양대사 및 건강에 관련된 total protein, glucose, AST, ALT 및 GGT 농도가 과밀도 처리구에 비해 효과적으로 개선되는 결과를 보였다. 체위 발육(development of body size)의 경우 저밀도 및 일반 처리구의 체중, 흉폭, 요각폭 및 곤폭은 고밀도 처리구에 비해 현저하게 증가하였으며, 특히, 저밀도 처리구는 일반 처리구보다 체위발육이 우수한 결과를 보였다. 그리고 저밀도 및 일반 처리구는 고밀도 처리구에 비해 깔짚의 수분 함량, 대장균 및 콕시듐의 조절에서도 긍정적인 결과를 보였다. 이와같이 한우 육성우의 적정 사육밀도는 두당 $6m^2$ 이상이 바람직한 것으로 판단된다. 따라서 본 연구에서는 원료사료의 선택 및 구성비율 변경을 통해 메탄 생성량을 저감시킬 수 있는 가능성을 사료자원의 배합비 조정으로 메탄 저감용 사료생산의 가능성을 제시하였으며, 사육밀도는 한우의 성장과 발육에 중요한 요인임을 알 수 있었다. 따라서 본 연구에서는 적절한 원료사료의 선택 및 구성비율 변경을 통해 메탄 발생량 조절의 가능성을 제시하였으며, 사육밀도는 한우의 성장과 발육에 중요한 요인임을 확인할 수 있었다.

Keywords

References

  1. Armes, D. R. 1980. Thermal environmenta effects production efficiency of livestock, Bioscience. 30:457. https://doi.org/10.2307/1307947
  2. A.O.A.C. Official Methods of Analysis (15th Ed). Association of Official Analytical Chemist. Washington. D. C. 1990.
  3. Cole, C. V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Moseir, A., Paustian, K., Rosenberg, N., Sampson, N., Sauerbeck, D. and Zhao, Q. 1997. Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutrient Cycling in Agroecosystems. 49:221-228. https://doi.org/10.1023/A:1009731711346
  4. Czerkawski, J. W., K. L. Blaxter and EF. W. Wainman. 1996. The metabolism of oleic, linoleic and linolenic acids by sheep with reference to there on methane production Br. J. Nutr. 29:349-357.
  5. Davami, A., Wineland, M. J., Jones, W. T. and Peterson, R. A. 1987. Effects of population size, floor space, and feeder space upon productive performance, external appearance, and plasma corticosteron concentration of laying hens. Poltry Sci. 66:251-257. https://doi.org/10.3382/ps.0660251
  6. Desjardins, R. L., Kulshreshtha, S. N., Junkins, B., Smith, W., Grant, B. and Boehm, M. 2001. Canadian greenhouse gas mitigation options in agriculture. Nutrient Cycling in Agroecosystems. 60:317-326. https://doi.org/10.1023/A:1012697912871
  7. Finlay, B. J., Esteban, G., Clarke, K. J., Williams, A. G., Embley, T. M. and Hirt, R. P. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS. Microbiol. Lett., 117:157-162. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  8. Goering, H. K. and Van Soest, P. J. Forage fiber analysis. 1970. Hatcy. Page 222 in nutrition and lactation in the daily cow. ed. Garnsworthy. P. C. printed by Anchor-Brandon Ltd. Tiptree, Essex. England
  9. Gonzaez, L. A., Ferret, A., Manteca, X., Rui-sde-Qla-storre, J. L., Calsamiglia, S., Devant, M. and Bach, A. 2008. Performance, behavior, and welfare of friesian heifers housed in pens with two, four, and eight individuls per concentrate feeding place. J. Anim. Sci. 86:1446-1458. https://doi.org/10.2527/jas.2007-0675
  10. Ha, J. J., Rhee, Y. J., Jang, W. J., Kim, W. Y., Li, S. G. and Song, Y. H. 2009. Studies on variation of characteristics in Hanwoo steers by pen and group size. Kor. J. Lives. Hous. & Env. 15(1):9-16.
  11. Haaland, G. L. 1987. Protected fat in bovine rations. Ph, D. Dissertation. Colorado State University Fort. Collins.
  12. IPCC (Intergovernment Panel on Climate Change). 1992. Climate change 2001. ed Houghton, J. T. er al. 200p. Cambridge University Press, New York.
  13. IPCC (Intergovernment Panel on Climate Change). 2001. Climate change 2001. The scientific Basis. Cambridge, UK: Cambridge University Press.
  14. Janzen, H. H., Desjardins, R. L., Asselin, J. M. R. and Grace, B. 1999. The Health of our Air: Towards sustainable agriculture in Canada. Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON. Publication No. 1981/E.
  15. Jeon, B. T., Park, I. H., Lee, S. M., Moon, S. H., Kim, K. H., Kim, J. S. and Son, J. C. 1997. The effects of different fiber sources on chewing behavior of Korean Native Cattle. Korean. J. Anim. Sci. 39(4): 383-390.
  16. Jeppsson, K. H. 1999. Volatilization of ammonia in deep-litter systeam with different beding materials for young cattle. J. Agric. Engng Res. 73:49-57. https://doi.org/10.1006/jaer.1998.0387
  17. Jonson, H. D. 1983. Effect of environment alcontrol on beef productivity in proceedings of sympossium stategies for the most efficient beef production. Kyoto. Japan. Aug.11-13.
  18. Kondo, S., Sekine, J., Okubo, M. and Adahida, Y. 1989. The effect of group size and space allowance on the agonistic and spacing behaviour of cattle. Appl. Anim. Behav. Sci. 24:127-135. https://doi.org/10.1016/0168-1591(89)90040-3
  19. Li, S. G., Yang, Y. X., Rhee, Y. J., Jang, W. J., Ha, J. J., Lee, S. K. and Song, Y. H. 2010. Growth, behavior, and carcass traits of fattening Hanwoo (Korean native cattle) steers managed in different group sizes. Asian-Aust. J. Anim. Sci. 23(7):952-959. https://doi.org/10.5713/ajas.2010.90276
  20. Mitchell, J. 1. 1988. Stress: The history and future of critical incident stress debriefings. Journal of Emergency Medical Services, 7-52.
  21. Moss, A. R., Jouany, J. -P. and Newbold, C. J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49, 231-235. https://doi.org/10.1051/animres:2000119
  22. Newbold, C. J., B. Lassalas, and J. P. Jouany. 1995. The importancey of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21, 230-234.
  23. Newbold, C. J., Lassalas, B. and Jouany, J. P. 1995. The importance of methanogenesis associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol., 21:230-234. https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
  24. Panivivat, R., Kegley, E. B. and Pennington, J. A., Kellogg, D. W. and Krumpelman, S. L. 2004. Growth perfor- mance and health of dairy calves bedded with different types of materials, Journal of Dairy Science, 87:3736-3745. https://doi.org/10.3168/jds.S0022-0302(04)73512-2
  25. Price, E. O. and Wallach, S. J. 1991. Effects of group size and the male to female ratio on the sexual performance and aggressive behavior of bulls in serving capacity testa. J. Anim. Sci. 69:1034-1040. https://doi.org/10.2527/1991.6931034x
  26. Robert, J. C. 1995. Environmental factors and nutrition of livestock. The Korean Journal of Nutrition. 6:241-265.
  27. Roush, W. B., Mashaly, M. M. and Graves, H. B. 1984. Effects of increased bird population in a fixed cage area on production and economic responses of single comb white leghorn laying hens. Poultry Sci. 63:45-48. https://doi.org/10.3382/ps.0630045
  28. SAS. 1999. SAS/STAT Software for PC. Release 6.11, SAS Institute, Cary, NC, U.S.A.
  29. Van Soest, P. J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: United States, 1994. (Received Sep. 5, 2010; Revised Feb. 24, 2011; Accepted Mar. 7, 2011).
  30. Watts, J. M. and Stookey, K. M. 2000. Vocal behavior in cattle: the animal's commentary on its biological processes and welfare. Appl. Anim. Behav. Sci. 67:15. https://doi.org/10.1016/S0168-1591(99)00108-2
  31. 이상무, 장재원. 2011. 거세 한우 육성우 사육밀도가 채식행동에 미치는 영향. 한국동물자원과학회지 53(5):489-496. https://doi.org/10.5187/JAST.2011.53.5.489
  32. 조재희. 2008. 사육공간에 따른 사육두수가 한우 거세우의 산육특성에 미치는 영향. 강원대학교 석사학위논문.