DOI QR코드

DOI QR Code

Temporal and spatial variation in the distribution of life history phases of Chondrus crispus (Gigartinales, Rhodophyta)

  • Garbary, David J. (Department of Biology, St. Francis Xavier University) ;
  • Tompkins, Elizabeth (Department of Biology, St. Francis Xavier University) ;
  • White, Katelyn (Department of Biology, St. Francis Xavier University) ;
  • Corey, Peter (Department of Plant and Animal Sciences, Nova Scotia Agricultural College) ;
  • Kim, Jang-K. (Department of Plant and Animal Sciences, Nova Scotia Agricultural College)
  • Received : 2011.01.10
  • Accepted : 2011.02.19
  • Published : 2011.03.15

Abstract

Thirty populations of Chondrus crispus Stackhouse from Nova Scotia were collected during the years 1993 to 2011. Taken from estuaries, wave exposed open coasts, high intertidal rock pools and shallow subtidal habitats, the populations were evaluated for relative abundance of tetrasporophytic and gametophytic life history phases. Over 2,800 thalli were characterized using the resorcinol-acetal test to distinguish the kappa- and lambda-carrageenan containing fronds of gametophytes and tetrasporophytes, respectively. These populations had $77{\pm}5%$ gametophytes (mean ${\pm}95%$ confidence interval), with most populations having gametophyte : sporophyte ratios ranging from 2 : 1 to 9 : 1. No population had a dominance of tetrasporophytes, although two populations had 1 : 1 ratios. A meta-analysis of our data along with previously published accounts showed no significant changes in gametophyte dominance with respect to hypothesized gradients of wave exposure, salinity, or water depth. Significant changes occurred in ratios at five sites where replicate sampling occurred in different years. We conclude that C. crispus in Maritime Canada has a natural ratio of 3 : 1 or greater in stable conditions, and that lower ratios represent recovery from disturbance in which bare substratum is created that is subsequently colonized by carpospores from remaining gametophytic thalli.

Keywords

References

  1. Bellgrove, A. & Aoki, M. N. 2008. Variation in gametophyte dominance in populations of Chondrus verrucosus (Gigartinaceae, Rhodophyta). Phycol. Res. 56:246-254. https://doi.org/10.1111/j.1440-1835.2008.00506.x
  2. Bhattacharya, D. 1984. The demography of Chondrus crispus Stackhouse. MS thesis, Dalhousie University, Halifax, NS, Canada, 120 pp.
  3. Bhattacharya, D. 1985. The demography of fronds of Chondrus crispus Stackhouse. J. Exp. Mar. Biol. Ecol. 91:217-231. https://doi.org/10.1016/0022-0981(85)90177-7
  4. Bird, C. J. & McLachlan, J. L. 1992. Seaweed flora of the maritimes. 1. Rhodophyta, the red algae. Biopress, Bristol, 177 pp.
  5. Bird, C. J. & van der Meer, J. P. 1993. Systematics of economically important marine algae: a Canadian perspective. Can. J. Bot. 71:361-369. https://doi.org/10.1139/b93-040
  6. Brown, M. T., Neish, A. & Harwood, D. 2004. Comparison of three techniques for identifying isomorphic phases of Chondrus crispus (Gigartinaceae). J. Appl. Phycol. 16:447-450. https://doi.org/10.1007/s10811-004-5507-y
  7. Carrington, E., Grace, S. P. & Chopin, T. 2001. Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J. Phycol. 37:699-704. https://doi.org/10.1046/j.1529-8817.2001.00169.x
  8. Chen, L. C. -M. & McLachlan, J. 1972. The life history of Chondrus crispus in culture. Can. J. Bot. 50:1055-1060. https://doi.org/10.1139/b72-129
  9. Chen, L. C. -M., McLachlan, J., Neish, A. C. & Shacklock, P. F. 1973. The ratio of kappa- to lambda-carrageenan in nuclear phases of the rhodophycean algae, Chondrus crispus and Gigartina stellata. J. Mar. Biol. Assoc. U. K. 53:11-16. https://doi.org/10.1017/S0025315400056599
  10. Chopin, T. 1986. The red alga Chondrus crispus Stackhouse (Irish moss) and carrageenans: a review. Can. Tech. Rep. Fish. Aquat. Sci. 1514:1-69.
  11. Chopin, T., Pringle, J. D. & Semple, R. E. 1988. Reproductive capacity of dragraked and non-dragraked Irish moss (Chondrus crispus Stackhouse) beds in the southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 45:758-766. https://doi.org/10.1139/f88-093
  12. Correa, J. A. & McLachlan, J. L. 1992. Endophytic algae of Chondrus crispus (Rhodophyta). IV. Effects on the host following infections by Acrochaete operculata and A. heteroclada (Chlorophyta). Mar. Ecol. Prog. Ser. 81:73-87. https://doi.org/10.3354/meps081073
  13. Craigie, J. S. & Leigh, C. 1978. Carrageenans and agars. In Hellebust, J. A. & Craigie, J. S. (Eds.) Handbook of Phycological Methods: Physiological and Biochemical Methods. Cambridge University Press, Cambridge, pp. 109-131.
  14. Craigie, J. S. & Pringle, J. D. 1978. Spatial distribution of tetrasporophytes and gametophytes in four maritime populations of Chondrus crispus. Can. J. Bot. 56:2910-2914. https://doi.org/10.1139/b78-349
  15. Dyck, L., De Wreede, R. E. & Garbary, D. 1985. Life history phases in Iridaea cordata (Gigartinaceae): relative abundance and distribution from British Colombia to California. Jpn. J. Phycol. 33:225-232.
  16. Dyck, L. J. & De Wreede, R. E. 1995. Patterns of seasonal demographic change in the alternate isomorphic stages of Mazzaella splendens (Gigartinales, Rhodophyta). Phycologia 34:390-395. https://doi.org/10.2216/i0031-8884-34-5-390.1
  17. Fernandez, C. & Menendez, M. P. 1991. Ecology of Chondrus crispus Stackhouse on the northern coast of Spain. II. Reproduction. Bot. Mar. 34:303-310. https://doi.org/10.1515/botm.1991.34.4.303
  18. Fierst, J., TerHorst, C., Kübler, J. E. & Dudgeon, S. 2005. Fertilization success can drive patterns of phase dominance in complex life histories. J. Phycol. 41:238-249. https://doi.org/10.1111/j.1529-8817.2005.04024.x
  19. Fournet, I., Deslandes, E. & Floc’h, J. -Y. 1993. Iridescence: a useful criterion to sort gametophytes from sporophytes in the red alga Chondrus crispus. J. Appl. Phycol. 5:535-537. https://doi.org/10.1007/BF02182512
  20. Garbary, D. J. & De Wreede, R. E. 1988. Life history phases in natural populations of Gigartinaceae (Rhodophyta): quantification using resorcinol. In Lobban, C. S., Chapman, D. J. & Kremer, B. P. (Eds.) Experimental Phycology: A Laboratory Manual. Cambridge University Press, Cambridge, MA, pp. 174-178.
  21. Guidone, M. & Grace, S. 2010. The ratio of gametophytes to tetrasporophytes of intertidal Chondrus crispus (Gigartinaceae) across a salinity gradient. Rhodora 112:80-84. https://doi.org/10.3119/08-35.1
  22. Hannach, G. & Santelices, B. 1985. Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta: Gigartinales). Mar. Ecol. Prog. Ser. 22:291-303. https://doi.org/10.3354/meps022291
  23. Heaven, C. S. & Scrosati, R. A. 2008. Benthic community composition across gradients of intertidal elevation, wave exposure, and ice scour in Atlantic Canada. Mar. Ecol. Prog. Ser. 369:13-23. https://doi.org/10.3354/meps07655
  24. Lazo, M. L., Greenwell, M. & McLachlan, J. 1989. Population structure of Chondrus crispus Stackhouse (Gigartin aceae, Rhodophyta) along the coast of Prince Edward Island, Canada: distribution of gametophytic and sporophytic fronds. J. Exp. Mar. Biol. Ecol. 126:45-58. https://doi.org/10.1016/0022-0981(89)90123-8
  25. Lindgren, A. & Aberg, P. 1996. Proportion of life cycle stages of Chondrus crispus and its population structure: a comparison between a marine and an estuarine environment. Bot. Mar. 39:263-268. https://doi.org/10.1515/botm.1996.39.1-6.263
  26. MacFarlane, C. 1952. A survey of certain seaweeds of commercial importance in southwest Nova Scotia. Can. J. Bot. 30:78-97. https://doi.org/10.1139/b52-008
  27. Mach, K. J. 2009. Mechanical and biological consequences of repetitive loading: crack initiation and fatigue failure in the red macroalga Mazzaella. J. Exp. Biol. 212:961-976. https://doi.org/10.1242/jeb.026989
  28. Mathieson, A. C. & Burns, R. L. 1975. Ecological studies of economic red algae. V. Growth and reproduction of natural and harvested populations of Chondrus crispus Stackhouse in New Hampshire. J. Exp. Mar. Biol. Ecol. 17:137-156. https://doi.org/10.1016/0022-0981(75)90027-1
  29. Mathieson, A. C. & Prince, J. S. 1973. Ecology of Chondrus crispus Stackhouse. Proc. N. S. Inst. Sci. 27(Suppl.):53-79.
  30. McCandless, E. L. 1981. Biological control of carrageenan structure: effects conferred by the phase of life cycle of the carrageenophyte. Proc. Int. Seaweed Symp. 8:1-18.
  31. McCandless, E. L., Craigie, J. S. & Walter, J. A. 1973. Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus. Planta 112:201-212. https://doi.org/10.1007/BF00385324
  32. McLachlan, J. 1991. Chondrus crispus (Irish moss), an ecologically important and commercially valuable species of red seaweed of the North Atlantic Ocean. In Mauchline, J. & Nemoto, T. (Eds.) Marine Biology: Its Accomplishment and Future Prospect. Hokusensha Publishing Co., Tokyo, pp. 217-233.
  33. McLachlan, J., Greenwell, M., Bird, C. J. & Holmsgaard, J. E. 1987. Standing stocks of seaweeds of commercial importance on the north shore of Prince Edward Island, Canada. Bot. Mar. 30:277-289. https://doi.org/10.1515/botm.1987.30.4.277
  34. McLachlan, J. L., Blanchard, W., Field, C. & Lewis, N. I. 2011. Gametophyte life-history dominance of Chondrus crispus (Gigartinaceae, Rhodophyta) along the Atlantic coast of Nova Scotia, Canada. Algae 26:51-60. https://doi.org/10.4490/algae.2011.26.1.051
  35. McLachlan, J. L., Quinn, J. & MacDougall, C. 1989. The structure of the plant of Chondrus crispus Stackhouse (Irish moss). J. Appl. Phycol. 1:311-317. https://doi.org/10.1007/BF00003467
  36. Mudge, B. & Scrosati, R. 2003. Effects of wave exposure on the proportion of gametophytes and tetrasporophytes of Mazzaella oregona (Rhodophyta: Gigartinales) from Pacific Canada. J. Mar. Biol. Assoc. U. K. 83:701-704. https://doi.org/10.1017/S0025315403007665h
  37. Otaíza, R. D., Abades, S. R. & Brante, A. J. 2001. Seasonal changes in abundance and shifts in dominance of life history stages of the carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) in south-central Chile. J. Appl. Phycol. 13:161-171. https://doi.org/10.1023/A:1011135308283
  38. Parker, T. & McLachlan, J. 1990. Relationship between cover of Chondrus crispus (Gigartinales, Rhodophyta) and Phymatolithon (Corallinales, Rhodophyta) on friable rock substrata. Hydrobiologia 204/205:247-251.
  39. Quinn, G. P. & Keough, M. J. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, 537 pp.
  40. Scrosati, R. & DeWreede, R. E. 1999. Demographic models to simulate the stable ratio between ecologically similar gametophytes and tetrasporophytes in populations of the Gigartinaceae (Rhodophyta). Phycol. Res. 47:153-157. https://doi.org/10.1111/j.1440-1835.1999.tb00295.x
  41. Scrosati, R., Garbary, D. J. & McLachlan, J. 1994. Reproductive ecology of Chondrus crispus (Rhodophyta, Gigartinales) from Nova Scotia, Canada. Bot. Mar. 37:293-300. https://doi.org/10.1515/botm.1994.37.4.293
  42. Scrosati, R. & Mudge, B. 2004a. Effects of elevation, wave exposure, and year on the proportion of gametophytes and tetrasporophytes in Mazzaella parksii (Rhodophyta, Gigartinaceae) populations. Hydrobiologia 520:199-205. https://doi.org/10.1023/B:HYDR.0000027839.48584.6c
  43. Scrosati, R. & Mudge, B. 2004b. Persistence of gametophyte predominance in Chondrus crispus (Rhodophyta, Gigartinaceae) from Nova Scotia after 12 years. Hydrobiologia 519:215-218. https://doi.org/10.1023/B:HYDR.0000026600.88646.31
  44. Sharp, G. J. 1987. Growth and reproduction in wild and cultivated stocks of Chondrus crispus. Hydrobiologia 151/152:349-354.
  45. Sharp, G., Semple, R., Vandermeulen, H., Wilson, M., LaRocque, C. & Nebel, S. 2010. The Basin Head Irish moss (Chondrus crispus) population abundance and distribution 1980 to 2008. Research document No. 2010/054. DFO Canadian Science Advisory Secretariat, Dartmouth, NS, 32 pp.
  46. Shaughnessy, F. J. & De Wreede, R. E. 1991. Reliability of the resorcinol method for identifying isomorphic phases in the Gigartinaceae (Rhodophyta). J. Appl. Phycol. 3:121-127. https://doi.org/10.1007/BF00003694
  47. Shaughnessy, F. J., De Wreede, R. E. & Bell, E. C. 1996. Consequences of morphology and tissue strength to blade survivorship of two closely related Rhodophyta species. Mar. Ecol. Prog. Ser. 136:257-266. https://doi.org/10.3354/meps136257
  48. Taylor, A. R. A. & Chen, L. C. -M. 1973. The biology of Chondrus crispus Stackhouse: systematics, morphology and life history. Proc. N. S. Inst. Sci. 27(Suppl.):1-21.
  49. Taylor, W. R. 1962. Marine algae of the northeastern coast of North America. Revised ed. University of Michigan Press, Ann Arbor, MI, 509 pp.
  50. Thornber, C. S. & Gaines, S. D. 2003. Spatial and temporal variation of haploids and diploids in populations of four congeners of the marine alga Mazzaella. Mar. Ecol. Prog. Ser. 258:65-77. https://doi.org/10.3354/meps258065
  51. Thornber, C. S. & Gaines, S. D. 2004. Population demographics in species with biphasic life cycles. Ecology 85:1661-1674. https://doi.org/10.1890/02-4101
  52. Wright, E. C. 1981. The distribution and morphological variation of the tetrasporophytic phase and the gametophytic phase of the isomorphic alga Chondrus crispus Stackhouse. BSc Honours thesis, Dalhousie University, Halifax, NS, Canada, 21 pp.
  53. Yaphe, W. & Arsenault, G. P. 1965. Improved resorcinol reagent for determination of fructose, and 3,6-anhydrogalactose in polysaccharides. Anal. Biochem. 13:143-148. https://doi.org/10.1016/0003-2697(65)90128-4
  54. Zar, J. H. 1999. Biostatistical analysis. 4th ed. Prentice Hall, Upper Saddle River, NJ, 663 pp.

Cited by

  1. A Study on the Growth and Disease of Chondrus ocellatus in Korea vol.26, pp.3, 2013, https://doi.org/10.7847/jfp.2013.26.3.265
  2. Marine finfish effluent bioremediation: Effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta) vol.414-415, 2013, https://doi.org/10.1016/j.aquaculture.2013.08.008
  3. The clonal seaweed Chondrus crispus as a foundation species vol.31, pp.1, 2016, https://doi.org/10.4490/algae.2016.31.2.10
  4. Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent vol.26, pp.5, 2014, https://doi.org/10.1007/s10811-014-0247-0
  5. Life history interactions between the red algae Chondrus crispus (Gigartinales) and Grateloupia turuturu (Halymeniales) in a changing global environment vol.56, pp.2, 2017, https://doi.org/10.2216/16-72.1
  6. Haploid females in the isomorphic biphasic life-cycle of Gracilaria chilensis excel in survival vol.18, pp.1, 2018, https://doi.org/10.1186/s12862-018-1285-z
  7. Carrageenans from Sarcothalia crispata and Gigartina skottsbergii: Structural Analysis and Interpolyelectrolyte Complex Formation for Drug Controlled Release vol.20, pp.6, 2018, https://doi.org/10.1007/s10126-018-9842-4
  8. The unique giant Irish moss (Chondrus crispus) from Basin Head: Health assessment in relation to reference sites on Prince Edward Island pp.1916-2804, 2018, https://doi.org/10.1139/cjb-2018-0081
  9. Gametophyte life-history dominance of Chondrus crispus (Gigartinaceae, Rhodophyta) along the Atlantic coast of Nova Scotia, Canada vol.26, pp.1, 2011, https://doi.org/10.4490/algae.2011.26.1.051
  10. Clump structure, population structure and non-destructive biomass estimation of the New Zealand carrageenophyte Sarcothalia lanceata (Gigartinaceae, Rhodophyta) vol.59, pp.5, 2016, https://doi.org/10.1515/bot-2016-0059
  11. Clump structure, population structure and non-destructive biomass estimation of the New Zealand carrageenophyte Sarcothalia lanceata (Gigartinaceae, Rhodophyta) vol.59, pp.5, 2016, https://doi.org/10.1515/bot-2016-0059
  12. The composition and anti-inflammatory effect of polysaccharides from the red alga Chondrus verrucosus vol.85, pp.5, 2011, https://doi.org/10.1007/s12562-019-01336-w
  13. To gel or not to gel: differential expression of carrageenan-related genes between the gametophyte and tetasporophyte life cycle stages of the red alga Chondrus crispus vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-67728-6
  14. Differential Frond Growth in the Isomorphic Haploid–diploid Red Seaweed Agarophyton chilense by Long‐term In Situ Monitoring vol.57, pp.2, 2011, https://doi.org/10.1111/jpy.13110
  15. Ecological, physiological, and biomechanical differences between gametophytes and sporophytes of Chondrus ocellatus (Gigartinales, Rhodophyta)1 vol.57, pp.5, 2011, https://doi.org/10.1111/jpy.13193