DOI QR코드

DOI QR Code

Enhancing Skin Delivery of 5-Aminolevulinic Acid with Transferosome Using Lyso-Phospholipid and Surfactant

  • Han, In-Sook (Department of Immunology, School of Medicine, Kyungpook National University) ;
  • Kang, Min-Young (Department of Immunology, School of Medicine, Kyungpook National University) ;
  • Kim, Moon-Kyu (Department of Immunology, School of Medicine, Kyungpook National University) ;
  • Kim, Jung-Chul (Department of Immunology, School of Medicine, Kyungpook National University)
  • Received : 2011.01.07
  • Accepted : 2011.02.18
  • Published : 2011.02.20

Abstract

In order to enhance the clinical efficacy of 5-aminolevulinic acid-induced photodynamic therapy (ALA-PDT), liposomal formulations using bulk hydrogenated phospholipids from soybean were introduced. Three types of lipids, S75-3, S100-3, and SL80-3 were used for formulating ALA. The pH of all the liposomal ALA is 4.5~5.5 and the size is 50~200 nm. All the liposomal formulations gave better ex vivo ALA skin penetration using nude mice skin in Franz cell than free ALA did. Among them, SL80-3 including 22% of lyso-phosphocholine achieved excellent ALA penetration when compared with those of S75-3 and S100-3 which have only 1~2% of lyso-phospholipids. S100-3 showed a little better results than S75-3 did. Addition of humectants (glycerine, propylene glycol, butylene glycol, betaine) in liposomal ALA formulated with SL80-3 produced little enhancing effect in ALA penetration. On the other hand, addition of surfactants (Tween 20, 60, Brij 72, 76, 78) in same liposomal system produced significant increase in ALA penetration. Among them, transferosomal system of lyso-phospholipid, SL80-3 and the surfactant, Brij76 showed the highest ALA penetration. Furthermore, this system also established the highest in vivo PpIX biosynthesis in hairy mice skin of C57BL/6. These results concluded that the transferosome of SL80-3 and Brij76 produced the best results in both ALA penetration and PpIX biosynthesis, and proved good correlation between them.

Keywords

References

  1. Casas A., Batlle, A., 2006. Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy, Curr. Med. Chem., 13, 1157-1168. https://doi.org/10.2174/092986706776360888
  2. Casas, A., Fukuda, H., Venosa, G., Del, A.M., Batlle, C., 2000. The influence of the vehicle on the synthesis of porphyrins after topical application of 5-aminolaevulinic acid. Implications in cutaneous photodynamic sensitization, Br. J. Dermatol., 143, 564-572. https://doi.org/10.1111/j.1365-2133.2000.03711.x
  3. Divaris, D.X.G., Kennedy, J.C., Poittier, R.H., 1990. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolaevulinic acid correlates with localized protoporphyrin IX fluorescence, Am. J. Pathol., 136, 891-897.
  4. Fang, Y.-P., Tsai, Y.-H., Wu, P.-C., Huang, Y.-B., 2008. Comparision of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy, Int. J. Pharm., 365, 144-152.
  5. Han, I., Jun, M.S., Kim, S.K., Kim M., Kim J.C., 2005 Expression pattern and intensity of protoporphyrin IX induced by liposomal 5-aminolevulinic acid in rat pilosebaceous unit throughout hair cycle, Arch. Dermatol. Res., 297, 210-217. https://doi.org/10.1007/s00403-005-0613-5
  6. Iinuma, S., Farshi, S.S., Ortel, B., Hasan, T., 1994. A mechanistic study of cellular photodestruction with 5-Aminolevulinic acidinduced porphyrin, Br. J. Cancer, 70, 21-28. https://doi.org/10.1038/bjc.1994.244
  7. Kosobe, T., Moriyama E., Tokuoka, Y., 2005. Size and surface charge effect of 5-aminolevulinic acid-containing liposomes on photodynamic therapy for cultivated cancer cells, Drug Dev. Ind. Pharm., 31, 623-629. https://doi.org/10.1080/03639040500216170
  8. Leeuw, J., Beek, N., Bjerring, P., Neumann, H.A., 2010. Photodynamic therapy of acne vulgaris using 5-aminolevulinic acid 0.5% liposomal spray and intense pulsed light in combination with topical keratolytic agents, J. Eur. Acad. Dermatol. Venereol., 24, 460-469. https://doi.org/10.1111/j.1468-3083.2009.03447.x
  9. Lopez, R., Bentley, M., Delgado-Charro, M., Guy, R., 2003. Optimization of aminolevulinic acid delivery by iontophoresis, J. Con. Rel., 88, 65-70. https://doi.org/10.1016/S0168-3659(02)00456-X
  10. Malik, Z., Kostenich, G., Roitman, L., Ehrenberg, B., Orenstein, A., 1995. Topical application of 5-aminolaevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice, J. Photochem. Photobiol. B., 28, 213-218. https://doi.org/10.1016/1011-1344(95)07117-K
  11. Merclin, N., Bender, J., Sparr, E., Guy, R.H., Ehresson, H., Engstrom, S., 2004. Transdermal delivery from a lipid sponge phase- iontophoretic and passive transport in vitro of 5-aminolevulinic acid and its methyl ester, J. Con. Rel., 100, 191-198. https://doi.org/10.1016/j.jconrel.2004.08.025
  12. Noh, S.M., Park, D.-E., Im, S., Kim. S., Kim, Y.B., Oh, Y.-K., 2010. The effects of storage conditions on the stability of porcine placenta extract-loaded liposome formulations, J. Pharm. Invest., 40(3), 187-192. https://doi.org/10.4333/KPS.2010.40.3.187
  13. Okayama, A., Fujii, S., Miura, R., 1990. Optimized fluorometric determination of urinary delta-aminolevulinic acid by using pre-column derivatization, and identification of the derivative, Clin. Chem., 36, 1494-1497.
  14. Pierre, M.B., Tedesco, A.C., Marchetti, J.M., Bentley, M.V., 2001. Stratum corneum lipids liposomes for the topical delivery of 5-aminolaevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study, BMC Dermatol., 1, 5-10. https://doi.org/10.1186/1471-5945-1-5
  15. Rhodes, L.E., Tsoukas, M.M., Anderson, R.R., Kollias, N., 1997. Iontophoretic delivery of ALA provides a quantitative model for ALA pharmacokinetics and PpIX phototoxicity in human skin, J. Invest. Dermatol., 108, 87-91. https://doi.org/10.1111/1523-1747.ep12285644
  16. Szeimies, R.M., Calzavara-Pinton, P., Karrer, S., Ortel, B., Landthaler, M., 1996. Topical photodynamic therapy in dermatology, J. Photochem. Photobiol. B., 36, 213-219. https://doi.org/10.1016/S1011-1344(96)07375-7
  17. Tsai, J.-C., Chen, I.-H., Wong, T.-W., Lo, Y.-L., 2002. In vitro/in vivo correlations between transdermal delivery of 5-aminolevulinic acid and cutaneous protoporphyrin IX accumulation and effect of formulation, Br. J. Dermatol., 146, 853-862. https://doi.org/10.1046/j.1365-2133.2002.04715.x
  18. Venosa, G.D., Hermida, L., Batlle, A., Fukuda, H., Defain, M.V., Mamone, L., Rodriguez, L., Macrobert, A., Casas, A., 2008. Characterisation of liposomes containing aminolevulinic acid and derived esters, J. Photochem. Photobiol. B., 92, 1-9. https://doi.org/10.1016/j.jphotobiol.2008.03.008