DOI QR코드

DOI QR Code

Isolation and Identification of Burkholderia pyrrocinia CH-67 to Control Tomato Leaf Mold and Damping-off on Crisphead Lettuce and Tomato

  • 투고 : 2010.07.19
  • 심사 : 2010.12.14
  • 발행 : 2011.03.01

초록

A bacterial strain CH-67 which exhibits antagonism towards several plant pathogenic fungi such as Botrytis cinerea, Fulvia fulva, Rhizoctonia solani, Sclerotinia sclerotiorum, Colletotrichum sp. and Phytophthora sp. was isolated from forest soil by a chitin-baiting method. This strain was identified as Burkholderia cepacia complex (Bcc) and belonging to genomovar IX (Burkholderia pyrrocinia) by colony morphology, biochemical traits and molecular method like 16S rRNA and recA gene analysis. This strain was used to develop a bio-fungicide for the control of tomato leaf mold caused by Fulvia fulva. Various formulations of B. pyrrocinia CH-67 were prepared using fermentation cultures of the bacterium in rice oil medium. The result of pot experiments led to selection of the wettable powder formulation CH67-C containing modified starch as the best formulation for the control of tomato leaf mold. CH67-C, at 100-fold dilution, showed a control value of 85% against tomato leaf mold. Its disease control efficacy was not significantly different from that of the chemical fungicide triflumidazole. B. pyrrocinia CH-67 was also effective in controlling damping-off caused by Rhizoctonia solani PY-1 in crisphead lettuce and tomato plants. CH67-C formulation was recognized as a cell-free formulation since B. pyrrocinia CH-67 was all lethal during formulation process. This study provides an effective biocontrol formulation of biofungicide using B. pyrrocinia CH-67 to control tomato leaf mold and damping-off crisphead lettuce and tomato.

키워드

참고문헌

  1. Bevivino, A., Dalmastri, C., Tabacchioni, S. and Chiarini, L.2000. Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biol. Fertil. Soils31:225−231. https://doi.org/10.1007/s003740050649
  2. Burkhead, K. D., Schisler, D. A. and Slininger, P. J. 1994. Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl. Environ. Microbiol. 60:2031-2039.
  3. Burkholder, W. H. 1950. Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115-118.
  4. Butler, E. J. and Jones, S. G. 1949. Tomato leaf mould, Cladosporium fulvum Cooke. London: Macmillan.
  5. Chiarini, L., Bevivino, A., Dalmastri, C., Tabacchioni, S. and Visca, P. 2006. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol. 14:277-286. https://doi.org/10.1016/j.tim.2006.04.006
  6. Coenye, T., Spilker, T., Reik, R., Vandamme, P. and LiPuma, J. J. 2005. Use of PCR analyses to define the distribution of Ralstonia species recovered from patients with cystic fibrosis. J. Clin. Microbiol. 43:3463-3466. https://doi.org/10.1128/JCM.43.7.3463-3466.2005
  7. Coenye, T., Vandamme, P., Govan, J. R. W. and Lipuma, J. J. 2001. Taxonomy and identification of the Burkholderia cepacia complex. J. Clin. Microbiol. 39:3427-3436. https://doi.org/10.1128/JCM.39.10.3427-3436.2001
  8. Cooke, M. C. 1883. New America fungi. Grevillea, 12, 32.
  9. Edwards, U., Rogall, T., Blockerl, H., Emde, M. and Bottger, E. C. 1989. Isolation and direct complete nucleotide determination of entire genes. characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17:7843-7853. https://doi.org/10.1093/nar/17.19.7843
  10. Fravel, D. R., Connick Jr., W. J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. In: Burges, H.D. (Ed.), Formulation of microbial pesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publishers, Dordrecht, pp.187-202.
  11. Heo, K. R., Lee, K. Y., Lee, S. H., Jung, S. J., Lee, S.-W. and Moon, B. J. 2008. Control of crisphead lettuce damping-off and bottom rot by seed coating with alginate and Pseudomonas aeruginosa LY-11. Plant Pathol. J. 24:67-73. https://doi.org/10.5423/PPJ.2008.24.1.067
  12. Jones, J. B., Jones, J. P., Stall, R. E. and Zitter, T. A. 1997. Compendium of tomato diseases. St. Paul, MN: APS Press.
  13. Joy, A. E. and Parke, J. L. 1994. Biocontrol of Alternaria leaf blight on american ginseng by Burkholderia cepacia AMMD. Pages 93-100 in: Challenges of the 21st century. Proceedings of the International Ginseng Conference, Vancouver, B. C. (Bailey, W. G., Whitehead, C., Proctor, J. T. A., Kyle, J. T., eds.) Simon Fraser Univ., Burnaby, B.C. Canada.
  14. Jukes, T. H. and Cantor, C. R. 1969. Evolution of protein molecules. In Munro HN, editor, Mammalian protein metabolism, pp. 21-132, Academic Press, New York.
  15. Lee, J. P., Lee, S.-W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. Y., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control. 37:329-337. https://doi.org/10.1016/j.biocontrol.2006.01.001
  16. Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J. Yi, Y. B., Park, S. H., Lee, S.-W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344-351. https://doi.org/10.5423/PPJ.2009.25.4.344
  17. Mahenthiralingam, E., Urban, T. A. and Goldberg, J. B. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 3:144-156. https://doi.org/10.1038/nrmicro1085
  18. Mao, W., Lewis, J. A., Lumsden, R. D. and Hebbar, K. P. 1998. Biocontrol of selected soilborne diseases of tomato and pepper plants. Crop Prot. 17:535-543. https://doi.org/10.1016/S0261-2194(98)00055-6
  19. McLoughlin, T. J., Quinn, J. P., Bettermann, A. and Bookland, R. 1992. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol. 58:1760-1763.
  20. Milus, E. A. and Rothrock, C. S. 1997. Efficacy of bacterial seed treatments for controlling Pythium root rot of winter wheat. Plant Dis. 81:180-184. https://doi.org/10.1094/PDIS.1997.81.2.180
  21. Parker, J. L. and Gurian-Sherman, D. 2001. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu. Rev. Phytopathol. 39:225-258. https://doi.org/10.1146/annurev.phyto.39.1.225
  22. Parker, W. L., Rathnum, M. L., Seiner, V., Treo, W. H., Principe, P. A. and Skyes, R. B. 1984. Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J. Antibiot. (Tokyo) 37:431-440. https://doi.org/10.7164/antibiotics.37.431
  23. Payne, G. W., Vandamme, P., Morgan, S. H., LiPuma, J. J., Coenye, T., Weightman, A. J., Jones, T. H. and Mahenthiralingam, E. 2005. Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl. Environ. Microbiol. 71:3917-3927. https://doi.org/10.1128/AEM.71.7.3917-3927.2005
  24. Pedersen, E. A., Reddy, M. S. and Chakravarty, P. 1999. Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. Eur. J. For. Pathol. 29:123-134. https://doi.org/10.1046/j.1439-0329.1999.00146.x
  25. Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Baker, C. J., Li, W., De souza, J. T., Lewis, J. A. and Chung, S. H. 2005. Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot. 24:141-155. https://doi.org/10.1016/j.cropro.2004.07.004
  26. Rodriguez-Kabana, R., Godoy, G., Morgan-Jones, G. and Shelby, R. A. 1983. The determination of soil chitinase activity: conditions for assay and ecological studies. Plant Soil. 75:95-106. https://doi.org/10.1007/BF02178617
  27. Saitou, N. and Nei, M. 1987. The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  28. Schisler, D. A., Slininger, P. J., Behle, R. W., Jackson, M. A., 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267
  29. Smith, P., Last, F. T., Kempton, R. J. and Gisborne, J. H. 1969. Tomato leaf mould: its assessment and effects on yield. Ann. Appl. Biol. 63:19-26. https://doi.org/10.1111/j.1744-7348.1969.tb05462.x
  30. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  31. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487

피인용 문헌

  1. Effect of agricultural land use change on community composition of bacteria and ammonia oxidizers vol.13, pp.7, 2013, https://doi.org/10.1007/s11368-013-0713-3
  2. Condition for Mass Production of Antagonistic Bacterium Burkholderia pyrrocinia CAB08106-4 to Control Garlic White Rot vol.41, pp.1, 2013, https://doi.org/10.4489/KJM.2013.41.1.42
  3. Identification of a Gene Encoding Adenylate Kinase Involved in Antifungal Activity Expression of the Biocontrol Strain Burkholderia pyrrocinia CH-67 vol.28, pp.4, 2012, https://doi.org/10.5423/PPJ.OA.08.2012.0124
  4. Occidiofungin is an important component responsible for the antifungal activity ofBurkholderia pyrrociniastrain Lyc2 vol.120, pp.3, 2016, https://doi.org/10.1111/jam.13036
  5. Draft Genome Sequence of the Antifungal-Producing Plant-Benefiting Bacterium Burkholderia pyrrocinia CH-67 vol.194, pp.23, 2012, https://doi.org/10.1128/JB.01779-12
  6. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities vol.79, pp.24, 2013, https://doi.org/10.1128/AEM.02365-13