나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링

Combustion Modeling of Nano/Micro Aluminum Particle Mixture

  • 윤시경 (포스코 기술연구원 제선FINEX 연구그룹) ;
  • 신준수 (한국항공대학교 항공우주 및 기계공학부) ;
  • 성홍계 (한국항공대학교 항공우주 및 기계공학부)
  • 투고 : 2011.07.20
  • 심사 : 2011.12.10
  • 발행 : 2011.12.30

초록

금속 연료 중 널리 사용되는 알루미늄의 연소 특성에 관하여 1차원 연소모델링을 제안하였다. 연소 모델링은 예열영역, 반응영역, 반응 후 영역, 세 영역으로 나누어 수행하였다. 또한 희박연소로 가정하여 단일 입자의 경우 입자크기와 당량비에 따른 화염속도, 나노와 마이크로 입자의 혼합물의 경우 혼합 비율에 따른 화염속도를 압력이 1기압 조건에서 계산하여 실험결과와 비교하였다. 단일입자의 경우, 입자의 크기가 작아질수록 화염속도가 빨라지고, 당량비가 낮아질수록 화염속도가 느려지는 현상이 관찰되었다. 나노와 마이크로 입자의 혼합물의 경우, 나노 입자의 함유량에 따라 화염속도는 빨라지며, 화염구조는 분리화염과 중첩화염이 나타남이 관찰되었다.

One dimensional combustion modeling of aluminum combustion behavior is proposed. Combustion model is assumed that region consists as follows ; preheat, reaction, post reaction region. Flame speed as a function of particle size, equivalence ratio for unitary particles and fraction ratio of micro to nano particle size for binary particles were investigated for lean burn condition at 1 atm. Results were compared with experimental data. For unitary particles, flame speed increase as particle size decreases, but opposite trend with equivalence ratio. For binary particles, flame speed increases proportionally as nano particle fraction increases. For flame structure, separated or overlapping flames are observed, depending on the fraction of nano sized particles.

키워드

참고문헌

  1. Richard A. Yetter, Grant Risha, Steven F. Son, "Metal particle combustion and nanotechnology," Proceedings of the Combustion Institute 32, 2009, pp.1819-1838 https://doi.org/10.1016/j.proci.2008.08.013
  2. Ingenito, A., Bruno, C., "Using powdered aluminum for space propulsion," Journal of Propulsion and Power, Vol. 20, No. 6, 2004, pp.1056-1063 https://doi.org/10.2514/1.5132
  3. Foote, J.P., Thompson, B.R., Lineberry, J.T., "Combustion of Aluminum with Steam for Underwater Propulsion," Advances in Chemical Propulsion, edited by G. Roy, CRC Press, Florida, 2002, pp.133-146
  4. Edward L. Dreizin "Metal-based reactive nanomaterials," Proceedings of the Combustion Institute 35, 2009, pp.141-167
  5. Huang, Y., Yang, V., Yetter, R. A., Risha, G. A. "Analysis of Aluminum Particle Combustion in Different Oxidizer Environments," AIAA 2005-0738, 2005
  6. Puri, P., Yang, V., "Thermo-Mechanical Behavior of Nano Aluminum Particles with Oxide Layers," 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-938, 2008
  7. Goroshin, S., M. Bidabadi, Lee, J.H.S., "Quenching Distance of Laminar Flame in Aluminum Dust Clouds," Combustion and Flame, 105: 147-160, 1996 https://doi.org/10.1016/0010-2180(95)00183-2
  8. Goroshin, S., Fomenko, I., Lee, J.H.S., "Burning Velocity in Fuel-Rich Aluminum Dust Clouds," Proceedings of the Combustion Institute, Vol. 26, 1996, pp.1961-1967 https://doi.org/10.1016/S0082-0784(96)80019-1
  9. Goroshin, S., Kolbe, M., Lee, J.H.S., "Flame speed in a binary suspension of solid fuel particles," Proceedings of the Combustion Institute, Vol. 28, 2000, pp.2811-2817 https://doi.org/10.1016/S0082-0784(00)80703-1
  10. Friedman, R., Macek, A., Combust. Flame 6:9-19, 1962 https://doi.org/10.1016/0010-2180(62)90062-7
  11. Friedman, R., Macek, A., Ninth Symposium(International) on Combustion, The Combustion Institute, Pittsburg, 1963, pp.703-709
  12. Bidabadi, M., Mooallemi, N., I. Shafieenejad, M. Jadidi. "Combustion of Bimodal Nano/Micro Aluminum Suspension with New Reaction Rate Model," American Journal of Engineering and Applied Sciences 1 (4), 2008, pp.295-301 https://doi.org/10.3844/ajeassp.2008.295.301
  13. Bidabadi, M., Rahbari, A., "Combustion modeling of the premixed flame propagation," Proceedings of ECTC, 2008
  14. Bidabadi, M., Shabani, A., "An analytic model for flame quenching distance in aluminum dust suspensions," Australian Journal of Basis and Applied Sciences, 2(4):1058-1067, 2008
  15. Bidabadi, M., Shabani, A., Jadidi, M., "An analytic study of radiation effects on the premixed laminar flames of aluminum dust clouds," J. Mechanical Engineering Science, Proc. IMechE Vol. 224, Part C, pp.1679-1695
  16. Bidabadi, M., Moallemi, N., Shafieenejad, I., Khalilinejad, R., Novinzadeh, A. B., "Perturbation technique to invesigate the role of radiation from flame to dust particle," Australian Journal of Basic and Applied Science, 3(2), 2009, pp.1347-1356
  17. Bidabadi, M., Haghiri, A., Rahbari, A., "Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a mico-iron dust cloud," Journal of Hazardous Materials, HAZMAT-10873, 2009
  18. Bidabadi, M., Rahbari, A., "Modeling combustion of Lycopodium particles by considering the temperature difference between the gas and the particles," Combustion, Explosion, and Shock Waves, Vol. 45, No. 3, 2009, pp.278-285 https://doi.org/10.1007/s10573-009-0037-1
  19. Jadidi, M., Bidababi, M., Hosseini, M. E., "Prediction of laminar flame in aluminum dust clouds with a two-dimensional analytical model," J. Aerospace Engineering, Proc. IMechE Vol. 223, Part G, 2009, pp.915-925 https://doi.org/10.1243/09544100JAERO512
  20. Bidabadi, M., Haghiri, A., Rahbari, A., "The effect of lewis and Damkolhler numbers on the flame propagation through micro-organic dust particles," International Journal of Thermal Science 49, 2010, pp.534-542 https://doi.org/10.1016/j.ijthermalsci.2009.10.002
  21. Huang, Y., Risha, G.A., Yang, V., Yetter, R.A., "Combustion of Bi-Modal Nano/Micron-Sized Aluminum Particle Dust in Air," Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp.2001-2009 https://doi.org/10.1016/j.proci.2006.08.103
  22. Huang, Y., Risha, G.A., Yang, V., Yetter, R.A., "Effect of particle size on combustion of aluminum particle dust in air," Combustion and Flame, Vol. 156, No. 1, 2009, pp.5-13 https://doi.org/10.1016/j.combustflame.2008.07.018
  23. Sundaram, D.S., Puri, P., Huang, Y., Yetter, R.A., Yang, V., 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-641, 2009
  24. Sundaram, D.S., Yang, V., Cormell, T.L., Risha G.A., Yetter, R.A., Young, G., "Combustion of aluminum, aluminum hydride, and ice mixtures," 49th AIAA Aerospce Science Meeting include the New horizons forum and Aerospace Explosion, AIAA 2011-603, 2011
  25. Heesung Yang, Jihyung Lee, Kyungmoo Kim, Woongsup Yoon, "Simplified Model for Single Aluminum Particle Combustion," 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-636, 2009
  26. Heesung Yang, Woongsup Yoon, "Parametric Investigation on the Sensitivity of the Simplified Aluminum Combustion Modeling," 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace, AIAA 2010-958, 2010
  27. Heesung Yang, Woongsup Yoon, "Modeling of aluminum particle combustion with emphasis on the oxide effects and variable transport properties," Journal of Mechanical Science and Technology 24 (4), 2010, pp.909-921 https://doi.org/10.1007/s12206-010-0209-7
  28. Heesung Yang, Jihwan Lim, Jihyung Lee, Kyungmoo Kim, Woongsup Yoon, "Simplified Modeling of an Aluminum Paricle Combustion," Proceedings of KSAS-JSASS Joint Internaiional Symposium on Aerospace Engineering, 2008
  29. 성홍계, 윤시경, "청정 고에너지 금속 나노입자의 유용성," 대한기계학회저널, 제49권, 제9호, 통권 346호, 2009, pp.40-46
  30. 윤시경, 성홍계, "알루미늄 분말의 유용성과 화염전파 특성," 한국군사과학기술학회, 제15차 유도무기 학술대회, 2009, pp.267-272
  31. 윤시경, 성홍계, "나노 알루미늄-물 혼합물의 수반응 연소 모델링," 한국추진공학회 2010 년도 춘계학술대회 논문집, 2010, pp.472-475
  32. Shi-Kyung Yoon, Hong-Gye Sung, "Combustion analysis of Nano-Aluminum with water," 3rd Asia-Pacific International Symposium on Aerospace Technology, 2011
  33. R. Fridman, A. Macek, Combust. Flame 6 (1962) 9-19. https://doi.org/10.1016/0010-2180(62)90062-7
  34. K.O. Hartman, in: Proceedings of 8th JANAF Combustion Meeting, Vol. 1, 1971, pp.1-24
  35. R.P. Wilson, F.A. Williams, Proc. Combust. Inst. Vol. 13, 1971, pp.833-845 https://doi.org/10.1016/S0082-0784(71)80085-1
  36. S.E. Olsen, M.W. Beckstead, Journal of Propulsion and Power 12 (4), 1996, pp.662-671 https://doi.org/10.2514/3.24087
  37. A. Davis, Combust. Flame 7 (4), 1963, pp.359-367 https://doi.org/10.1016/0010-2180(63)90212-8
  38. J.L. Prentice, AIAA Paper, AIAA-1974-146, 1974
  39. S.C. Wong, S.R. Turns, Combustion Science and Technology 52, 1987, pp.221-242 https://doi.org/10.1080/00102208708952578
  40. T.P. Parr, C. Johnson, D. Hanson-Parr, K. Higa, K. Wilson, 39th JANNAF Combustion Subcommittee Meeting, December, 2003
  41. K. Park, D. Lee, A. Rai, D. Mukherjee, M.R. Zachariah, J. Phys. Chem. B 109 7290, 2005 https://doi.org/10.1021/jp048041v
  42. N. Eisenreich, H. Fietzek, M. Juez-Lorenzo, V. Kolarik, A. Koleczko, V. Weiser, Propel. Explos. Pyrotech. 29, 2004, pp.137-145 https://doi.org/10.1002/prep.200400045
  43. C.J. Bulian, T.T. Kerr, J.A. Puszynski, in: 31st International Pyrotechnics Seminar, Fort Collins, CO, 12-14 July, 2004, pp.327
  44. V.A. Ermakov, A.A. Razdobreev, A.I. Skorik, V.V. Pozdeev, S.S. Smolyakov, Combust. Explos. Shock Waves 18, 1982, pp.256-257 https://doi.org/10.1007/BF00789629
  45. I.G. Assovskiy, O.M. Zhigalina, G.P. Kuzhntsov, V.I. Kolesnikov-Svinarev, in: 5th International Microgravity Combustion Workshop, Cleveland, USA, May 18-20, 1999
  46. R. Fridman, A. Macek, Combust. Flame 6, 1962, pp.9-19 https://doi.org/10.1016/0010-2180(62)90062-7
  47. R. Fridman, A. Macek, Proc. Combust. Inst. 9, 1963, pp.703-709 https://doi.org/10.1016/S0082-0784(63)80078-8
  48. A.G. Merzhanov, Yu.M. Grigorjev, Yu.A. Gal'chenko, Combust. Flame 29, 1977, pp.1-14 https://doi.org/10.1016/0010-2180(77)90088-8
  49. S. Yuasa, Y. Zhu, S. Sogo, Combust. Flame 108, 387-396, 1962
  50. Y. Zhu, Y. Yuasa, Combust. Flame 115, 1998, pp.327-334 https://doi.org/10.1016/S0010-2180(97)00363-5
  51. M.E. Derevyga, L.N. Stesik, E.A. Fedorin, Combust. Explos. Shock Waves 13, 1977, pp.722-726 https://doi.org/10.1007/BF00740465
  52. C. Brossard, A. Ulas, C.L. Yen, K.K. Kuo, in: 16th International Colloquium on the Dynamic of Explosions and Reactive Systems, Krakow, Poland, August, 1997, pp.3-8
  53. M.A. Trunov, M. Schoenitz, F.L. Dreizin, Combust. Theory Modell. 10 (4), 2006, pp.604-623
  54. Bazyn, T., Krier, H., Clumac, N., "Evidence for the transition from the diffusion-limit in aluminum particle combustion," Proceedings of the Combustion Institute 31, 2007, pp.2021-2028 https://doi.org/10.1016/j.proci.2006.07.161
  55. Cassel, H.M., "Reports of Investigations 6551," Bureau of Mines, 1963.
  56. Ballal, D.R., Proceedings of Royal Society London A, Vol. 385, 1983, pp.21-51 https://doi.org/10.1098/rspa.1983.0003
  57. G.A. Risha, Y. Huang, R.A. Yetter, V. Yang, "Experimental Investigation of Aluminum Particle Dust Cloud, Combustion Under Various Oxidizing Environments," AIAA Paper, AIAA-2005-0739, 2005
  58. L.V., Boichuk, V.G. Shevchuk, A.I., Shvets, "Flame Propagation in Two-Component Aluminum-Boron Gas Suspensions" Combustion, Explosion and Shock Waves, Vol. 38, No. 6, 2002, pp.651-654 https://doi.org/10.1023/A:1021136126730
  59. Huang, Y., G.A. Risha, Yang, V. and R.A. Yetter, "Flame propagation in Bimodal Nano/Micro-sized Aluminum Particles/Air Mixtures", 44th Aerospace Science Meeting and Exhibit, 2006