References
-
Back, K., and S. Jung. 2010. The lack of plastidal transit sequence cannot override the targeting capacity of Bradyrhizobium japonicum
$\delta$ -aminolevulinic acid synthase in transgenic rice. Biol. Plant. 54:279-284. https://doi.org/10.1007/s10535-010-0049-4 -
Beale, S. I. 1978.
$\delta$ -Aminolevulinic acid in plants:its biosynthesis, regulation, and role in plastid development. Annu. Rev. Plant Physiol. 29:95-120. https://doi.org/10.1146/annurev.pp.29.060178.000523 - Bilger, W., and O. Björkman. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hederacanariensis. Photosynth. Res. 25:173-185. https://doi.org/10.1007/BF00033159
- Demmig-Adams, B., W. W. Adams III, D. H. Barker, B. A. Logan, D. R. Bowling and A. S. Verhoeven. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 98: 253-264. https://doi.org/10.1034/j.1399-3054.1996.980206.x
- Foyer, C. H., M. Lelandais and K. J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant. 92:696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
- Genty, B., J. M. Briantais and N. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
- Gilmore, A. M., and H. Y. Yamamoto. 1991. Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially-mediated linear and cyclic electron transport. Plant Physiol. 96:635-643. https://doi.org/10.1104/pp.96.2.635
- Gilmore, A. M., and H. Y. Yamamoto. 1993. Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth. Res. 35:67-78. https://doi.org/10.1007/BF02185412
- Hopf, F. R., and D. G. Whitten. 1978. Chemical transformations involving photoexcited porphyrins and metalloporphyrins. pp. 191-195. In D. Dolphin, ed. The Porphyrins. Vol. 2. Academic Press, New York.
- Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi and M. Konnai. 1997. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22:109-114. https://doi.org/10.1023/A:1005883930727
- Jung, S. 2009. Differential photodynamic-induced oxidative stress imposed by aminolevulinic acid and oxyfluorfen. Kor. J. Weed Sci. 29:336-342.
- Jung, S., and K. L. Steffen. 1997. Influence of photosynthetic photon flux densities before and during long-term chilling on xanthophyll cycle and chlorophyll fluorescence quenching in leaves of tomato (Lycopersicon hirsutum). Physiol. Plant. 100:958-966. https://doi.org/10.1111/j.1399-3054.1997.tb00023.x
- Krause, G. H. 1988. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant. 74:566-574. https://doi.org/10.1111/j.1399-3054.1988.tb02020.x
- Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382. https://doi.org/10.1016/0076-6879(87)48036-1
- Mittler, R., S. Vanderauwera, M. Gollery and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009
- Niyogi, K. K., O. Björkman and A. R. Grossman. 1997. The roles of specific xanthophylls in photoprotection. Proc. Natl. Acad. Sci. USA 94:14162-14167. https://doi.org/10.1073/pnas.94.25.14162
- Rebeiz, C. A., A. Montazer-Zouhoor, H. J. Hopen and S. M. Wu. 1984. Photodynamic herbicides:Concept and phenomenology. Enzyme Microb. Tech. 6: 390-401. https://doi.org/10.1016/0141-0229(84)90012-7
- Ruban, A. V., A. J. Young and P. Horton. 1993. Induction of nonphotochemical energy dissipation and absorbance changes in leaves. Evidence for changes in the state of the light-harvesting system of photosystem II in vivo. Plant Physiol. 102: 741-750. https://doi.org/10.1104/pp.102.3.741
- Sasaki, K., T. Tanaka and S. Nagai. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes. pp. 247-291. In A. M. Martin, ed. Bioconversion of Waste Materials to Industrial Products. Second Edition. Blackie Academic and Professional.
- Schreiber, U., W. Bilger and C. Neubauer. 1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. pp. 49-70. In E. D. Schulze and M. M. Caldwell, eds. Ecology of Photosynthesis. Springer-Verlag, Berlin.
- Sharma, J., M. Panico, J. Barber and H. R. Morris. 1997. Purification and determination of intact molecular mass by electrospray ionization mass spectrometry of the photosystem II reaction center subunits. J. Biol. Chem. 272:33153-33157. https://doi.org/10.1074/jbc.272.52.33153
- Trebst, A. 2003. Function of beta-carotene and tocopherol in photosystem II. Z. Naturforsch. C58:609-620.
- Tripathy, B. C., and N. Chakraborty. 1991. 5-Aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 96:761-767. https://doi.org/10.1104/pp.96.3.761
- von Wettstein, D., S. Gough and C. G. Kannangara. 1995. Chlorophyll biosynthesis. Plant Cell 7:1039-1057. https://doi.org/10.1105/tpc.7.7.1039
- Weis, E., and J. A. Berry. 1987. Quantum efficiency of photosystem II in relation to energy-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 894:198-208. https://doi.org/10.1016/0005-2728(87)90190-3
Cited by
- Differential Antioxidant Mechanisms of Rice Plants in Response to Oxyfluorfen and Paraquat vol.2, pp.3, 2013, https://doi.org/10.5660/WTS.2013.2.3.254