DOI QR코드

DOI QR Code

Photodynamic Stress-Induced Nonenzymatic Antioxidant Responses in Transgenic Rice Overexpressing 5-Aminolevulinic Acid Synthase

5-Aminolevulinic Acid Synthase를 과발현하는 형질전환 벼에서 광역학적 스트레스가 유도하는 비효소적 항산화반응

  • Jung, Sun-Yo (School of Life Sciences and Biotechnology, Kyungpook National University)
  • 정선요 (경북대학교 생명공학부)
  • Received : 2011.11.02
  • Accepted : 2011.12.05
  • Published : 2011.12.31

Abstract

We investigated photodynamic stress-induced antioxidant responses in transgenic rice overexpressing Bradyrhizobium japonicum 5-aminolevulinic acid synthase (ALA-S) coding sequence lacking plastidal transit sequence. High light of $350{\mu}mol\;m^{-2}\;s^{-1}$ decreased the quantum yield in the transgenic lines, C4 and C5, compared to that of wild-type line. By contrast, non-photochemical quenching (NPQ) levels of C4 and C5 under high light were higher than those of the transgenic lines under low light of $150{\mu}mol\;m^{-2}\;s^{-1}$ as well as wild-type line under low and high light. Greater levels of NPQ in the transgenic lines exposed to high light were in a close correlation with increases in the xanthophyll pigment, zeaxanthin. Under high light, levels of neoxanthin, violaxanthin, lutein, and ${\beta}$-carotene in the transgenic lines were lower than those in wild-type line. Taken together, nonphotochemical energy dissipation and photoprotectant xanthophyll pigments play a critical role to deal with the severe photodynamic damage in the transgenic rice plants, although they could not overcome the photodynamic stress, leading to severe photobleaching symptoms.

색소체 transit 서열이 결여된 Bradyrhizobium japonicum ALA-S 유전자를 과발현하는 형질전환 벼의 광역학적 스트레스에 의해 유도되는 항산화반응을 조사하였다. $350{\mu}mol\;m^{-2}\;s^{-1}$ 의 높은 광 수준은 야생형 벼에 비교하였을 때 형질전환 계통인 C4와 C5의 quantum yield를 감소시켰다. 대조적으로, 높은 광수준 하에서 형질전환 계통 C4와 C5의 nonphotochemical quenching (NPQ) 수준은 야생형 계통과 낮은 광 수준 하의 형질전환 계통에 비해 높은 증가를 보여주었다. 형질전환 계통에서 높은 NPQ 수준은 xanthophyll인 zeaxanthin 수준의 증가와 밀접한 관련이 있었다. $150{\mu}mol\;m^{-2}\;s^{-1}$ 의 낮은 광 수준과 비교하였을 때 높은 광 수준에서 violaxanthin 수준이 야생형 벼에서 증가하였으나, 형질전환 C4와 C5 계통에서는 현저하게 감소하였다. 형질전환 벼에서 nonphotochemical energy dissipation과 광보호기작을 가진 xanthophyll 색소가 광역학적 피해를 조절하는데 결정적인 역할을 하는 것으로 생각되나, 이러한 기작이 광역학 스트레스를 극복하지는 못하였고 결과적으로 photobleaching 증상에 이르게 하였다.

Keywords

References

  1. Back, K., and S. Jung. 2010. The lack of plastidal transit sequence cannot override the targeting capacity of Bradyrhizobium japonicum $\delta$-aminolevulinic acid synthase in transgenic rice. Biol. Plant. 54:279-284. https://doi.org/10.1007/s10535-010-0049-4
  2. Beale, S. I. 1978. $\delta$-Aminolevulinic acid in plants:its biosynthesis, regulation, and role in plastid development. Annu. Rev. Plant Physiol. 29:95-120. https://doi.org/10.1146/annurev.pp.29.060178.000523
  3. Bilger, W., and O. Björkman. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hederacanariensis. Photosynth. Res. 25:173-185. https://doi.org/10.1007/BF00033159
  4. Demmig-Adams, B., W. W. Adams III, D. H. Barker, B. A. Logan, D. R. Bowling and A. S. Verhoeven. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 98: 253-264. https://doi.org/10.1034/j.1399-3054.1996.980206.x
  5. Foyer, C. H., M. Lelandais and K. J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant. 92:696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  6. Genty, B., J. M. Briantais and N. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  7. Gilmore, A. M., and H. Y. Yamamoto. 1991. Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially-mediated linear and cyclic electron transport. Plant Physiol. 96:635-643. https://doi.org/10.1104/pp.96.2.635
  8. Gilmore, A. M., and H. Y. Yamamoto. 1993. Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth. Res. 35:67-78. https://doi.org/10.1007/BF02185412
  9. Hopf, F. R., and D. G. Whitten. 1978. Chemical transformations involving photoexcited porphyrins and metalloporphyrins. pp. 191-195. In D. Dolphin, ed. The Porphyrins. Vol. 2. Academic Press, New York.
  10. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi and M. Konnai. 1997. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22:109-114. https://doi.org/10.1023/A:1005883930727
  11. Jung, S. 2009. Differential photodynamic-induced oxidative stress imposed by aminolevulinic acid and oxyfluorfen. Kor. J. Weed Sci. 29:336-342.
  12. Jung, S., and K. L. Steffen. 1997. Influence of photosynthetic photon flux densities before and during long-term chilling on xanthophyll cycle and chlorophyll fluorescence quenching in leaves of tomato (Lycopersicon hirsutum). Physiol. Plant. 100:958-966. https://doi.org/10.1111/j.1399-3054.1997.tb00023.x
  13. Krause, G. H. 1988. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant. 74:566-574. https://doi.org/10.1111/j.1399-3054.1988.tb02020.x
  14. Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  15. Mittler, R., S. Vanderauwera, M. Gollery and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009
  16. Niyogi, K. K., O. Björkman and A. R. Grossman. 1997. The roles of specific xanthophylls in photoprotection. Proc. Natl. Acad. Sci. USA 94:14162-14167. https://doi.org/10.1073/pnas.94.25.14162
  17. Rebeiz, C. A., A. Montazer-Zouhoor, H. J. Hopen and S. M. Wu. 1984. Photodynamic herbicides:Concept and phenomenology. Enzyme Microb. Tech. 6: 390-401. https://doi.org/10.1016/0141-0229(84)90012-7
  18. Ruban, A. V., A. J. Young and P. Horton. 1993. Induction of nonphotochemical energy dissipation and absorbance changes in leaves. Evidence for changes in the state of the light-harvesting system of photosystem II in vivo. Plant Physiol. 102: 741-750. https://doi.org/10.1104/pp.102.3.741
  19. Sasaki, K., T. Tanaka and S. Nagai. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes. pp. 247-291. In A. M. Martin, ed. Bioconversion of Waste Materials to Industrial Products. Second Edition. Blackie Academic and Professional.
  20. Schreiber, U., W. Bilger and C. Neubauer. 1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. pp. 49-70. In E. D. Schulze and M. M. Caldwell, eds. Ecology of Photosynthesis. Springer-Verlag, Berlin.
  21. Sharma, J., M. Panico, J. Barber and H. R. Morris. 1997. Purification and determination of intact molecular mass by electrospray ionization mass spectrometry of the photosystem II reaction center subunits. J. Biol. Chem. 272:33153-33157. https://doi.org/10.1074/jbc.272.52.33153
  22. Trebst, A. 2003. Function of beta-carotene and tocopherol in photosystem II. Z. Naturforsch. C58:609-620.
  23. Tripathy, B. C., and N. Chakraborty. 1991. 5-Aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 96:761-767. https://doi.org/10.1104/pp.96.3.761
  24. von Wettstein, D., S. Gough and C. G. Kannangara. 1995. Chlorophyll biosynthesis. Plant Cell 7:1039-1057. https://doi.org/10.1105/tpc.7.7.1039
  25. Weis, E., and J. A. Berry. 1987. Quantum efficiency of photosystem II in relation to energy-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 894:198-208. https://doi.org/10.1016/0005-2728(87)90190-3

Cited by

  1. Differential Antioxidant Mechanisms of Rice Plants in Response to Oxyfluorfen and Paraquat vol.2, pp.3, 2013, https://doi.org/10.5660/WTS.2013.2.3.254