DOI QR코드

DOI QR Code

다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구

A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet

  • Kim, Sang-Keun (School of Mechanical Engineering, Pusan National University) ;
  • Ha, Man-Yeong (School of Mechanical Engineering, Pusan National University) ;
  • Son, Chang-Min (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2011.03.09
  • 심사 : 2011.10.14
  • 발행 : 2011.11.10

초록

The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.

키워드

참고문헌

  1. Gardon, R. and Akfirat, J. C., 1966, Heat Transfer Characteristics of Impinging Two-Dimen sional Air Jets, Transactions of the ASME, Journal of Heat Transfer, Vol. 88, pp. 101-108. https://doi.org/10.1115/1.3691449
  2. Sparrow, E. M. and Wong, T. C., 1975, Impingement transfer coefficients due to initially laminar slot jets, Int. J. Heat and Mass Transfer, Vol. 18, pp. 597-605. https://doi.org/10.1016/0017-9310(75)90271-9
  3. Lin, Z. H., Chou, Y. J., and Hung, Y. H., 1997, Heat Transfer Behaviors of a Confined Slot Jet Impingement, Int. J. Heat and Mass Transfer, Vol. 40, No. 5, pp. 1095-1107. https://doi.org/10.1016/0017-9310(96)00135-4
  4. Beitelmal, A. H., Saad, M. A., and Patel, C. D., 2000, The Effect of Inclination on the Heat Transfer between a Flat Surface and Impinging Two-dimensional Air Jet, Int. J. Heat and Fluid Flow, Vol. 18, pp. 597-605.
  5. Chiriac, V. C. and Ortega, A., 2002, Numerical Study of Unsteady Flow and Hear transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface, Int. J. Heat and Mass Transfer, Vol. 45, pp. 1237-1248. https://doi.org/10.1016/S0017-9310(01)00224-1
  6. Elbanna, H. and Gahin, S., 1982, Investigation of two plane parallel jets, AIAA, Vol. 21, No. 7, pp. 986-991.
  7. Viskanta, R., 1993, Heat Transfer to Impinging Isothermal Gas and Flame Jets, Experimental Thermal and Fluid Science, Vol. 6, pp. 111-134. https://doi.org/10.1016/0894-1777(93)90022-B
  8. Huber, A. M. and Viskanta, R., 1994, Effect of jet-jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets, Int. J. Heat and Mass Transfer, Vol. 37, pp. 2859-2869. https://doi.org/10.1016/0017-9310(94)90340-9
  9. Kim, J. and Moin, P., 1985, Application of a Fractional-step Method to Incompressible Navier- stokes Equations, J. of Comp. Phys. Vol.59, pp. 308-323. https://doi.org/10.1016/0021-9991(85)90148-2
  10. Zang, Y., Street, R. L., and Koseff, J. R., 1994, A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier- Stokes Equations in Curvilinear Coordinates, J. Comp. Physics, Vol. 114, pp. 18-33. https://doi.org/10.1006/jcph.1994.1146
  11. Lee, H. G., Ha, M. Y., and Yoon, H. S., 2005, A numerical study on the fluid flow and heat transfer in the confined jet flow in the presence of magnetic field, Int. J. Heat and Mass Transfer, Vol. 48, pp. 5297-5309. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.025
  12. Yoon, H. S., Chun, H. H., Ha, M. Y., and Lee, H. G., 2004, A Numerical Study on the Fluid Flow and Heat Transfer Around a Circular Cylinder in an Aligned Magnetic Fields, Int. J. Heat and Mass Transfer, Vol. 47, pp. 4075- 4087. https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.015
  13. Lee, H. G., Ha, M. Y., Yoon, H. S., and Hong, S. D., 2005, A Numerical Study on the Impinging Jet Flow Characteristics in the Presence of Applied Magnetic Fields, Trans. of the KSME (B), Vol. 29, No. 5, pp. 537-544.
  14. Thomson, K. W., 1987, Time dependent boundary conditions for hyperbolic systems, J. Computation Physics, Vol. 68, pp. 1-24. https://doi.org/10.1016/0021-9991(87)90041-6
  15. Chattaopadhyay, H. and Saha, S. K., 2003, Turbulent flow and heat transfer from a slot jet impinging on a moving plate, Int. J. of Heat Fluid Flow, Vol. 24, pp. 685-697. https://doi.org/10.1016/S0142-727X(03)00062-6
  16. Hansen, L. G. and Webb, B. W., 1993, Air jet impingement heat transfer from modified surface, Int. J. Heat and Mass Transfer, Vol. 36, pp. 989-997. https://doi.org/10.1016/S0017-9310(05)80283-2