사용자 추적, 인식을 위한 영상인식 기술개발 동향

  • 김승훈 (전자부품연구원 지능로보틱스연구센터) ;
  • 정일균 (전자부품연구원 지능로보틱스연구센터) ;
  • 박창우 (전자부품연구원 지능로보틱스연구센터) ;
  • 황정훈 (전자부품연구원 지능로보틱스연구센터)
  • Published : 2011.03.25

Abstract

영상인식기술은 지능로봇 또는 지능형 홈이 하나 또는 다수의 영상정보를 이용하여 일상 생활 환경에서 대상 객체의 유무, 객체의 식별, 객체의 형상 추출, 객체의 위치 파악등을 자동으로 수행하는 기술을 통칭한다. 이러한 영상인식기술은 지능형 로봇과 지능형 홈, 지능형 안전시스템 등 앞으로 생활환경을 급속히 변화시킬 것으로 예상되는 첨단기기에서 가장 중요한 핵심기술이다.

Keywords

References

  1. A. Mohan, C. Papageorgiou, and T. Poggio, Example-based object detection in images by components,IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 349-361, 2001. https://doi.org/10.1109/34.917571
  2. N. Dalal and B. Triggs, Histograms of oriented gradients for human detection,International Conference on Computer Vision and Pattern Recognition, pp. 886-893, 2005.
  3. K. Mikolajczyk, C. Schmid, and A. Zisserman􀅰, Human detection based on a probabilistic assembly of robust part detectors,􀅱 European Conference on Computer Vision, pp. 69-81, 2004.
  4. K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe, A boosted particle filter: Multitarget detection and tracking, European Conference on Computer Vision, pp. 28-39, 2004.
  5. A. Shashua, Y. Gdalyahu, and G. Hayon, Pedestrian detection for driving assistance systems: Single-frame classification and system level performance,IEEE Intelligent Vehicles Symposium, pp. 1-6, 2004.
  6. A. Shashua, Y. Gdalyahu, and G. Hayon, Pedestrian detection for driving assistance systems: Single-frame classification and system level performance,IEEE Intelligent Vehicles Symposium, pp. 1-6, 2004.
  7. M. Enzweiler, P. Kanter, and D. M. Gavrila, Monocular pedestrian recognition using motion parallax,IEEE Intelligent Vehicles Symposium, pp. 792-797, 2008.
  8. F. Xu, and K. Fujimura, Human detection using depth and gray images,IEEE Conference on Advanced Video and Signal Based Surveillance, 2003.
  9. D. Dockstader and A. Tekalp, Multiple camera fusion for multiobject tracking,Multi-object Tracking Workshop, pp. 95-62, July 2001.
  10. A. Broggi, A. Fascioli, I. Fedriga, A. Tibaldi, and M. D. Rose, Stereo-based preprocessing for human shape localization in unstructured environments,IEEE Intelligent Vehicles Symposium, pp. 410-415, 2003.
  11. A. Ess, B. Leibe, and L. van Gool, Depth and appearance for mobile scene analysis,International Conference on Computer Vision, 2003.
  12. M. Enzweiler, and M. D. Gavrila, Monocular Pedestrian detection: survey and experiments,IEEE transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 2179-2195, 2009.
  13. Z. R. Struzik and A. Siebes, The haar wavelet transform in the time series similarity paradigm,Principles of data mining and knowledge discovery lecture note, vol. 1704, 1999
  14. C. Papageorgiou and T. Poggio, A trainable system for object detection,International Journal of Computer Vision, vol. 38, pp. 15-33, 2000. https://doi.org/10.1023/A:1008162616689
  15. D. G. Lowe, Distinctive image features from scale-invariant keypoints,International Journal of Computer, vol. 60, no. 2, pp. 91-110, 2004.
  16. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.
  17. Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, European Conference on Computational Learning Theory, pp. 23-37, 1995.
  18. I. P. Alonso et al, Combination of heature extraction methods for SVM pedestrian detection,IEEE TRANSACTIONS ON Intelligent Transportation Systems, vol. 8, no. 2, pp. 292-307, 2007. https://doi.org/10.1109/TITS.2007.894194
  19. O. Tuzel, F. Porikli, and P. Meer, Human Detection via Classification on Riemannian Manifolds,IEEE Computer Society Conference on Computer Vision & Pattern Recognition, June 2007.
  20. T. Cootes, C. Taylor, D. Cooper, and J. Gragam, Training models of shape from sets of examples,Proc. British machine vision conference, pp. 9-18, 1992
  21. I. Haritaoglu, D. Harwood, and L. Davis, W4:real-time surveillance of people and their activates,IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 809-830, 2000. https://doi.org/10.1109/34.868683
  22. C. Wren, A. Azerbayejani, T. Darrel, and A. Pentland, Pfinder: Real-time tracking of the human body,IEEE Trans. Pattern analysis and machine intelligence, vol. 19, no. 7, pp. 780-785, 1997. https://doi.org/10.1109/34.598236
  23. C. P. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection,Proceedings of the Sixth International Conference on Computer Vision, pp. 555, Washington, DC, USA, 1998.
  24. L. Leyrit, T. Chateau, C Tournayre, and J. Lapreste, Association of AdaBoost and Kernel Based machine Learning Methods for Visual Pedestrian Recognition,IEEE Intelligent Vehicles Symposium, pp. 67-72, Jun. 2008.
  25. S. Kang, J. Paik, A. Koschan, B. Abidi, and A. Abidi, Real-time video tracking using PTZ cameras,Proc. SPIE 6th Interational Conference on Quality Control by Artificial Vision, vol. 5132, pp. 103-111, 2003.
  26. P. Azzari, L. Stefano, and A. Bevilacqua, An effective real-time mosaicing algorithm apt to detect motion through background subtraction using a PTZ camera,IEEE Conf. Advanced Video and Signal-Based Surveillance, pp. 511-516, 2005.
  27. R. Canals, A. Roussel, H. Famechon, and S. Treuillet, A biprocessor-oriented vision-based target tracking system,IEEE Trans. Industrial Electronics, vol. 49, no. 2, pp. 500-506, 2002. https://doi.org/10.1109/41.993283
  28. J. Paik, Y. Park, and D. Kim, An adaptive motion decision system for digital image stabilizer based on edge pattern matching,IEEE Trans. Consumer Electronics, vol. 38, pp. 607- 615, 1992. https://doi.org/10.1109/30.156744
  29. S. Erturk,Digital Image Stabilization with sub-image phase correlation based global motion estimation,IEEE Trans. Consumer Electronics, vol. 49, pp. 1320-1325, 2003. https://doi.org/10.1109/TCE.2003.1261235
  30. F. Vella, A. Castorina, Massimo, and G. Messina, Digital image stabilization by adaptive block motion vectors filtering,IEEE Trans. Consumer Electronics, vol. 48, pp. 796-801, 2002. https://doi.org/10.1109/TCE.2002.1037077
  31. L. Xu and X. Lin, Digital image stabilization based on circular block matching,IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 566-574, 2006 https://doi.org/10.1109/TCE.2006.1649681
  32. J. Shin, S. Jang, S. Kim, C. Park, and J. Paik, Optical flow-based real-time object tracking using non-prior training active feature model,Real-time imaging, vol. 11, no. 3, pp. 204-218, 2005. https://doi.org/10.1016/j.rti.2005.03.006
  33. Y. Raja, S.J. McKenna, and S. Gong, Tracking and segmenting people in varying lighting conditions using colour,Proc. IEEE Int l Conf. Automatic Face and Gesture Recognition, pp. 228- 233, 1998.
  34. K. Schwerdt and J.L. Crowley, Robust face tracking using colour,Proc. IEEE Int l Conf. Automatic Face and Gesture Recognition, pp. 90-95, 2000.
  35. C. Wang and M.S. Berstein, A hybrid real-time face tracking system,Proc. IEEE Int l Conf. Acoustics, Speech and Signal Processing, vol. 6, pp. 12-15, 1998.
  36. S. Birchfield, Elliptical head tracking using intensity gradient and color histogram,IEEE Computer Vision and Pattern Recognition, pp. 232-237, 1998.
  37. G. Hager and K. Toyama, X vision: A portable substrate for realtime realtime vision applications,Computer Vision and Image Understanding, vol. 69, no. 1, pp. 23-37, 1998. https://doi.org/10.1006/cviu.1997.0586
  38. Z. Yao and H. Li, Tracking a detected face with dynamic programming,Image and Vision Computing, vol. 24, no. 6, pp. 573-580, 2006. https://doi.org/10.1016/j.imavis.2005.09.007
  39. T.F.Cootes, and G.J.Edwards, C.J.Taylor. Active appearance models,PAMI, 23(6), pp. 681-685, June, 2001. https://doi.org/10.1109/34.927467
  40. I.Matthews and S.Baker, Active Appearance Models Revisited, Tech. Report, CMU-RI-TR-03-01, April 2003.