References
- A. Mohan, C. Papageorgiou, and T. Poggio, Example-based object detection in images by components,IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 349-361, 2001. https://doi.org/10.1109/34.917571
- N. Dalal and B. Triggs, Histograms of oriented gradients for human detection,International Conference on Computer Vision and Pattern Recognition, pp. 886-893, 2005.
- K. Mikolajczyk, C. Schmid, and A. Zisserman, Human detection based on a probabilistic assembly of robust part detectors, European Conference on Computer Vision, pp. 69-81, 2004.
- K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe, A boosted particle filter: Multitarget detection and tracking, European Conference on Computer Vision, pp. 28-39, 2004.
- A. Shashua, Y. Gdalyahu, and G. Hayon, Pedestrian detection for driving assistance systems: Single-frame classification and system level performance,IEEE Intelligent Vehicles Symposium, pp. 1-6, 2004.
- A. Shashua, Y. Gdalyahu, and G. Hayon, Pedestrian detection for driving assistance systems: Single-frame classification and system level performance,IEEE Intelligent Vehicles Symposium, pp. 1-6, 2004.
- M. Enzweiler, P. Kanter, and D. M. Gavrila, Monocular pedestrian recognition using motion parallax,IEEE Intelligent Vehicles Symposium, pp. 792-797, 2008.
- F. Xu, and K. Fujimura, Human detection using depth and gray images,IEEE Conference on Advanced Video and Signal Based Surveillance, 2003.
- D. Dockstader and A. Tekalp, Multiple camera fusion for multiobject tracking,Multi-object Tracking Workshop, pp. 95-62, July 2001.
- A. Broggi, A. Fascioli, I. Fedriga, A. Tibaldi, and M. D. Rose, Stereo-based preprocessing for human shape localization in unstructured environments,IEEE Intelligent Vehicles Symposium, pp. 410-415, 2003.
- A. Ess, B. Leibe, and L. van Gool, Depth and appearance for mobile scene analysis,International Conference on Computer Vision, 2003.
- M. Enzweiler, and M. D. Gavrila, Monocular Pedestrian detection: survey and experiments,IEEE transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 2179-2195, 2009.
- Z. R. Struzik and A. Siebes, The haar wavelet transform in the time series similarity paradigm,Principles of data mining and knowledge discovery lecture note, vol. 1704, 1999
- C. Papageorgiou and T. Poggio, A trainable system for object detection,International Journal of Computer Vision, vol. 38, pp. 15-33, 2000. https://doi.org/10.1023/A:1008162616689
- D. G. Lowe, Distinctive image features from scale-invariant keypoints,International Journal of Computer, vol. 60, no. 2, pp. 91-110, 2004.
- V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.
- Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, European Conference on Computational Learning Theory, pp. 23-37, 1995.
- I. P. Alonso et al, Combination of heature extraction methods for SVM pedestrian detection,IEEE TRANSACTIONS ON Intelligent Transportation Systems, vol. 8, no. 2, pp. 292-307, 2007. https://doi.org/10.1109/TITS.2007.894194
- O. Tuzel, F. Porikli, and P. Meer, Human Detection via Classification on Riemannian Manifolds,IEEE Computer Society Conference on Computer Vision & Pattern Recognition, June 2007.
- T. Cootes, C. Taylor, D. Cooper, and J. Gragam, Training models of shape from sets of examples,Proc. British machine vision conference, pp. 9-18, 1992
- I. Haritaoglu, D. Harwood, and L. Davis, W4:real-time surveillance of people and their activates,IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 809-830, 2000. https://doi.org/10.1109/34.868683
- C. Wren, A. Azerbayejani, T. Darrel, and A. Pentland, Pfinder: Real-time tracking of the human body,IEEE Trans. Pattern analysis and machine intelligence, vol. 19, no. 7, pp. 780-785, 1997. https://doi.org/10.1109/34.598236
- C. P. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection,Proceedings of the Sixth International Conference on Computer Vision, pp. 555, Washington, DC, USA, 1998.
- L. Leyrit, T. Chateau, C Tournayre, and J. Lapreste, Association of AdaBoost and Kernel Based machine Learning Methods for Visual Pedestrian Recognition,IEEE Intelligent Vehicles Symposium, pp. 67-72, Jun. 2008.
- S. Kang, J. Paik, A. Koschan, B. Abidi, and A. Abidi, Real-time video tracking using PTZ cameras,Proc. SPIE 6th Interational Conference on Quality Control by Artificial Vision, vol. 5132, pp. 103-111, 2003.
- P. Azzari, L. Stefano, and A. Bevilacqua, An effective real-time mosaicing algorithm apt to detect motion through background subtraction using a PTZ camera,IEEE Conf. Advanced Video and Signal-Based Surveillance, pp. 511-516, 2005.
- R. Canals, A. Roussel, H. Famechon, and S. Treuillet, A biprocessor-oriented vision-based target tracking system,IEEE Trans. Industrial Electronics, vol. 49, no. 2, pp. 500-506, 2002. https://doi.org/10.1109/41.993283
- J. Paik, Y. Park, and D. Kim, An adaptive motion decision system for digital image stabilizer based on edge pattern matching,IEEE Trans. Consumer Electronics, vol. 38, pp. 607- 615, 1992. https://doi.org/10.1109/30.156744
- S. Erturk,Digital Image Stabilization with sub-image phase correlation based global motion estimation,IEEE Trans. Consumer Electronics, vol. 49, pp. 1320-1325, 2003. https://doi.org/10.1109/TCE.2003.1261235
- F. Vella, A. Castorina, Massimo, and G. Messina, Digital image stabilization by adaptive block motion vectors filtering,IEEE Trans. Consumer Electronics, vol. 48, pp. 796-801, 2002. https://doi.org/10.1109/TCE.2002.1037077
- L. Xu and X. Lin, Digital image stabilization based on circular block matching,IEEE Trans. Consumer Electronics, vol. 52, no. 2, pp. 566-574, 2006 https://doi.org/10.1109/TCE.2006.1649681
- J. Shin, S. Jang, S. Kim, C. Park, and J. Paik, Optical flow-based real-time object tracking using non-prior training active feature model,Real-time imaging, vol. 11, no. 3, pp. 204-218, 2005. https://doi.org/10.1016/j.rti.2005.03.006
- Y. Raja, S.J. McKenna, and S. Gong, Tracking and segmenting people in varying lighting conditions using colour,Proc. IEEE Int l Conf. Automatic Face and Gesture Recognition, pp. 228- 233, 1998.
- K. Schwerdt and J.L. Crowley, Robust face tracking using colour,Proc. IEEE Int l Conf. Automatic Face and Gesture Recognition, pp. 90-95, 2000.
- C. Wang and M.S. Berstein, A hybrid real-time face tracking system,Proc. IEEE Int l Conf. Acoustics, Speech and Signal Processing, vol. 6, pp. 12-15, 1998.
- S. Birchfield, Elliptical head tracking using intensity gradient and color histogram,IEEE Computer Vision and Pattern Recognition, pp. 232-237, 1998.
- G. Hager and K. Toyama, X vision: A portable substrate for realtime realtime vision applications,Computer Vision and Image Understanding, vol. 69, no. 1, pp. 23-37, 1998. https://doi.org/10.1006/cviu.1997.0586
- Z. Yao and H. Li, Tracking a detected face with dynamic programming,Image and Vision Computing, vol. 24, no. 6, pp. 573-580, 2006. https://doi.org/10.1016/j.imavis.2005.09.007
- T.F.Cootes, and G.J.Edwards, C.J.Taylor. Active appearance models,PAMI, 23(6), pp. 681-685, June, 2001. https://doi.org/10.1109/34.927467
- I.Matthews and S.Baker, Active Appearance Models Revisited, Tech. Report, CMU-RI-TR-03-01, April 2003.