DOI QR코드

DOI QR Code

유효응력에 근거한 불포화토의 역학적 구성모델

Constitutive Model for Unsaturated Soils Based on the Effective Stress

  • 신호성 (울산대학교 건설환경공학부)
  • Shin, Ho-Sung (Dept. of Civil and Environmental Engineering, University of Ulsan)
  • 투고 : 2011.08.01
  • 심사 : 2011.11.15
  • 발행 : 2011.11.30

초록

다양한 지반공학적 문제들에서 불포화 상태의 중요성이 강조되면서, 불포화 지반의 열-수리-역학적 현상들에 대한 거동특성을 모사하기 위한 역학적 구성모델 개발이 진행되고 있다. 본 연구에서는 Bishop의 유효응력 정의에 근거한 불포화 지반의 역학적 탄소성 구성모델을 제시하였다. 유효응력에 근거한 구성관계는 유효응력과 온도를 주 변수로 증분 형식으로 표현되었으며, 이를 이용하여 응력 갱신과 강성 텐서를 산정하였다. 개발된 구성모델을 이용하여 THM 현상을 포함하는 불포화토의 1차원 거동, 불포화토의 삼축 압축시험, 그리고 고준위 방사성폐기물 시설의 완충재의 거동 특성에 관한 예제 해석을 수행하여 해의 안정성과 구성모델의 적용성에 대하여 논의하였다. 수치해석결과는 개발된 역학적 구성모델이 THM 현상의 매우 복잡한 거동을 효과적으로 모사할 수 있었으며, 일반적인 불포화토의 거동 해석뿐만 아니라 다양한 환경 조건하에서의 THM 거동 해석에 적용이 가능할 것으로 판단된다.

The importance of unsaturated state in various geo-engineering problems has led to the advance of mechanical constitutive model emulating behavior of unsaturated soils in response to thermo-hydro-mechanical loading. Elasto-plastic mechanical constitutive model for unsaturated soil is formulated based on Bishop's effective stress. Effective stress and temperature are main variables in constitutive equation, and incremental formulation of constitutive relationship is derived to compute stress update and stiffness tensor. Numerical simulations involving coupled THM processes are conducted to discuss numerical stability and applicability of developed constitutive model: one-dimensional test, tri-axial compression test, and clay-buffering at high level radioactive waste disposal. Numerical results demonstrated that developed model can predict very complex behavior of coupled THM phenomena and is applicable to geo-engineering problems under various environmental conditions, as well as interpret typical behavior of unsaturated soils.

키워드

과제정보

연구 과제 주관 기관 : 울산대학교

참고문헌

  1. 신호성 (2011), "불포화지반에 대한 열-수리-역학 거동의 수식화" 한국지반공학회논문집, Vol.27, pp.75-83
  2. 한국원자력연구소 (2003), "사용후핵연료 처분을 위한 처분용기,완충재,뒷채움재의 조건", KAERI/TR-2628.
  3. Alonso, E. E., Alcoverro, J., Coste, F., Malinsky, L., MerrienSoukatchoff, VOL., Kadiri, 1., Nowak, T., Shao, H., Nguyen, T. S., Selvadurai, A. P. S., Arrnand, G., Sobolik, S. R., Itamura, M., Stone, C. M., Webb, S. W., Rejeb, A., Tijani, M., Maouche, Z., Kobayashi, A., Kurikami, H., Ito, A., Sugita, Y., Chijimatsu, M., Borgesson, L., Hemelind, J., Rutqvist, J., Tsang, C. F., and Jussila, P. (2005), "The FEBEX benchmark test: Case definition and comparison of modelling approaches", International Journal of Rock Mechanics and Mining Sciences, Vol.42, pp.611-638. https://doi.org/10.1016/j.ijrmms.2005.03.004
  4. Alonso, E. E., Gens, A., and Josa, A. (1990), "A constitutive model for partially saturated soils", Geotechnique, Vol.40, pp.405-430. https://doi.org/10.1680/geot.1990.40.3.405
  5. Bishop, A. W. (1959), "The principle of effective stress", Teknisk Ukeblad, Vol.106, pp.859-863.
  6. Bo1zoo, G., Scbrefler, B. A, and Zienkiewicz, O. C. (1996), "Elastoplastic soil constitutive laws generalized to partially saturated states", Geotechnique, Vol.46, pp.279-289 . https://doi.org/10.1680/geot.1996.46.2.279
  7. Campanella, R. G., and Mitchell, J. K. (1968), "Influence of temperature variations on soil behavior", Journal of the Soil Mechanics and Foundations Division, Vol.94, pp.709-734.
  8. Cekerevac, C., and Laloui, L. (2004), "Experimental study of thermal effects on the mechanical behaviour of a clay", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.28, pp.209-228. https://doi.org/10.1002/nag.332
  9. Cho, W.-J., Lee, J.-O., and Kwon, S. (2010), "Analysis of thermohydro- mechanical process in the engineered barrier system of a high-level waste repository", Nuclear Engineering and Design, Vol.240, pp.1688-1698. https://doi.org/10.1016/j.nucengdes.2010.02.027
  10. Coussy, O. (1995), "Mechanics of porous continua", Chichester, Wiley.
  11. ENRESA (1998), "FEBEX: Full-scale engineered barriers experiment in crytalline host rock: Preoperational thermo-hydro-mechanical (THM) modelling of the 'in-situ' test", Publicacion tecnica num.
  12. Eriksson, L. G. (1989), "Temperature effects on consolidation properties of sulphide clays", Proceedings of the12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Jeneiro, pp.2087-2090.
  13. Escario, V., Juca, J. F. T. (1989), "Strength and deformation of partly saturated soils", Proceedings of the Twelfth International Conference on Soil Mechanics and Foundation Engineering, Vol, pp.43-46.
  14. Francois, B., and Laloui, L. (2008), "ACMEG-TS: A constitutive model for unsaturated soils under non-isothermal conditions", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.32, pp.l955-1988.
  15. Fredlund, D. G., Morgenstem, N. R., and Widger, R. A. (1978), "The shear strength of unsaturated soils", Canadian Geotechnical Journal, Vol.15, pp.313-321. https://doi.org/10.1139/t78-029
  16. Gens, A. (2010), "Soil-environment interactions in geotechnical engineering", Geotechnique, Vol.60, pp.3-74. https://doi.org/10.1680/geot.9.P.109
  17. Gens, A., Guimaraes, L. D., Garcia-Molina, A., and Alonso, E. E. (2002), "Factors controlling rock-clay buffer interaction in a radioactive waste repository", Engineering Geology, Vol.64, pp.297-308. https://doi.org/10.1016/S0013-7952(02)00026-1
  18. Goh, S. G., Rabardjo, H., and Leong, E. C. (2010), "Shear strength equations for unsaturated soil under drying and wetting", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, pp.594-606. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000261
  19. Hueckel, T., and Baldi, G. (1990), "Thermoplasticity of saturated clays. Experimental constitutive study", Journal of geotechnical engineering, Vol.116, pp. 1778-1796. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778)
  20. Jommi, C. (2000), "Remarks on constitutive modelling of unsaturated soils", In: Experimental evidence and theoretical approaches in unsaturated soils, Proc. of into workshop on unsaturated soil, Trento, Italy, Balkema, Rotterdam, pp.139-153.
  21. Khalili, N., Geiser, F., and Blight, G. E. (2004), "Effective stress in unsaturated soils: Review with new evidence", International Journal of Geomechanics, Vol.4, pp.115-126. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(115)
  22. Laloui, L., and Cekerevac, C. (2003), "Thermo-plasticity of clays: An isotropic yield mechanism", Computers and Geotechnics, Vol.30, pp.649-660. https://doi.org/10.1016/j.compgeo.2003.09.001
  23. Laloui, L., and Francois, B. (2009), "ACMEG-T: Soil Thermoplasticity Model", Journal of Engineering Mechanics-ASCE, Vol.135, pp.932-944. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000011
  24. Laloui, L., and Nuth, M. (2009), "On the use of the generalised effective stress in the constitutive modelling of unsaturated soils", Computers and Geotechnics, Vol.36, pp.20-3. https://doi.org/10.1016/j.compgeo.2008.03.002
  25. Lewis, R. W., and Schrefler, B. A. (1998), "The finite element method in the static and dynamic deformation and consolidation of porous media", New York, John Wiley.
  26. Loret, B., and Khalili, N. (2000), "A three-phase model for unsaturated soils", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.24, pp.893-927. https://doi.org/10.1002/1096-9853(200009)24:11<893::AID-NAG105>3.0.CO;2-V
  27. Loret, B. and Khalili, N. (2002), "An effective stress elasticplastic model for unsaturated porous media", Mechanics of Materials, Vol.34, pp.97-116. https://doi.org/10.1016/S0167-6636(01)00092-8
  28. Millard, A., Rejeb, A., Chijimatsu, M., Jing, L., De Jonge, J., Kohlmeier, M., Nguyen, T. S., Rutqvist, J., Souley, M., and Sugita, Y. (2005), "Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository - BMTl of the DECOV ALEX III project. Part 2: Effects of THM coupling in continuous and homogeneous rocks", International Journal of Rock Mechanics and Mining Sciences, Vol.42, pp.73 1-744. https://doi.org/10.1016/j.ijrmms.2005.03.011
  29. Mitchell, J. K., and Soga, K. (2005), "Fundamentals of soil behavior", New York Wiley, p.577.
  30. Murray, E. J., and Sivakumar, VOL. (2010), "Unsaturated soils: A fundamental approach to the interpretation of soil behavior", Wiley-Blackwell.
  31. Nishimura, T., and Fredlund, D. G. (2000), "Relationship between shear strength and matric suction in an unsaturated silty soil", Proceedings of the Asian conference on unsaturated soils, Singapore, Asia, pp.563-568.
  32. Nuth, M., and Laloui, L. (2008), "Effective stress concept in unsaturated soils: Clarification and validation of a unified framework", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.32, pp.771-801. https://doi.org/10.1002/nag.645
  33. Oberg, A. L., and Sallfors, G. (1997), "Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve", Geotechnical Testing Journal, Vol.20, pp.40-48. https://doi.org/10.1520/GTJ11419J
  34. Olivella, S., Gens, A., Carrera, J., and Alonso, E. E. (1996), "Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media", Engineering Computations, Vol.13, pp.87-&. https://doi.org/10.1108/02644409610151575
  35. Oloo, S. Y., and Fredlund, D. G. (1996), "A method for determination of b for statically compacted soils", Canadian Geotechnical Journal, Vol.33, pp.272-280. https://doi.org/10.1139/t96-006
  36. Romero, E. (1999), "Characterisation and thermo-hydro-mechanical behaviour of unsaturated Boom clay and experimental study", Barcelona, Universite polytechnique de Catalunya.
  37. Rutqvist, J., Barr, D., Birkholzer, J. T., Fujisaki, K., Kolditz, 0., Liu, Q. S., Fujita, T., Wang, W. Q., and Zhang, C. Y. (2009), "A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories", Environmental Geology, Vol.57, pp. 1347-1360. https://doi.org/10.1007/s00254-008-1552-1
  38. Rutqvist, J., Ijiri, Y., and Yamamoto, H. (2011), "Implementation of the Barcelona Basic Model into TOUGH-FLAC for simulations of the geomechanical behavior of unsaturated soils", Computers & Geosciences, Vol.37, pp.751-762. https://doi.org/10.1016/j.cageo.2010.10.011
  39. Santamarina, J. C., and Shin, H. (2009), "Friction in granular media", in Hatzor, Y.H., Sulem, J., and Vardoulakis, I., eds., Meso-scale Shear Physics in Earthquake and Landslide Mechanics, CRC Press, pp.l57-188.
  40. Schrefler, B. A. (1984), "The [mite element method in soil consolidation with applications to surface subsidence", University College of Swansea.
  41. Schrefler, B. A., and Scotta, R. (2001), "A fully coupled dynamic model for two-phase fluid flow in deformable porous media",Computer Methods in Applied Mechanics and Engineering, Vol.190, pp.3223-3246. https://doi.org/10.1016/S0045-7825(00)00390-X
  42. Sheng, D. (2011), "Review of fundamental principles in modelling unsaturated soil behavior", Computers and Geotechnics, Vol.38, pp.757-776. https://doi.org/10.1016/j.compgeo.2011.05.002
  43. Sheng, D., Fredlund, D. G., and Gens, A. (2008a), "A new modelling approach for unsaturated soils using independent stress variables", Canadian Geotechnical Journal, Vol.45 , pp.511-534. https://doi.org/10.1139/T07-112
  44. Sheng, D., Gens, A., Fredlund, D. G., and Sloan, S. W. (2008b), "Unsaturated soils: From constitutive modelling to numerical algorithms", Computers and Geotechnics, Vol.35, pp.810-824. https://doi.org/10.1016/j.compgeo.2008.08.011
  45. Sheng, D., Sloan, S. W., and Gens, A. (2004), "A constitutive model for unsaturated soils: thermomechanical and computational aspects", Computational Mechanics, Vol.33, pp.453-465. https://doi.org/10.1007/s00466-003-0545-x
  46. Sheng, D., Zhou, A., and Fredlund, D. G. (2009), "Shear strength criteria for unsaturated soils", Geotechnical and Geological Engineering, Vol.29, pp.l45-l59.
  47. Sheng, D. C., Pedroso, D. M., and Abbo, A. J. (2008c), "Non-convexity and stress-path dependency of unsaturated soil models", Computational Mechanics, Vol.42, pp.685-694. https://doi.org/10.1007/s00466-008-0268-0
  48. Sheng, D. C., Sloan, S. W., Gens, A., and Smith, D. W. (2003), "Finite element formulation and algorithms for unsaturated soils. Part I: Theory", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.27, pp.745-765. https://doi.org/10.1002/nag.295
  49. Terzaghi, K. (1936), "The shear resistance of saturated soils", Proceedings for the 1st. International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, pp.54-56.
  50. Tong, F., Jing, L., and Zimmerman, R. W. (2010), "A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses", International Journal of Rock Mechanics and Mining Sciences, Vol.47, pp.205-217. https://doi.org/10.1016/j.ijrmms.2009.11.002
  51. Vanapalli, S. K., and Fredlund, D. G. (1999), "Empirical procedures to predict the shear strength of unsaturated soils", in 11th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Balkema, Rotterdam, pp.93-96.
  52. Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E., and Clifton, A. W. (1996), "Model for the prediction of shear strength with respect to soil suction", Canadian Geotechnical Journal, Vol.33, pp.3 79-392. https://doi.org/10.1139/t96-060
  53. Villar, M. VOL., and L1oret, A. (2008), "Influence of dry density and water content on the swelling of a compacted bentonite", Applied Clay Science, Vol.39, pp.38-49. https://doi.org/10.1016/j.clay.2007.04.007
  54. Vulliet, L., Laloui, L., and Harding, R. (2002), "Environmental geomechanics: An introduction", in Environmental Geomechanics, Lausanne, EPFL-Press, pp.3-12.
  55. Wheeler, S. J., Gallipoli, D., and Karstunen, M. (2002), "Comments on use of the Barcelona Basic Model for unsaturated soils", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.26, pp.1561-1571. https://doi.org/10.1002/nag.259
  56. Wheeler, S. J., Sharma, R. S., and Buisson, M. S. R. (2003), "Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils", Geotechnique, Vol.53, pp.4154.
  57. Wiebe, B., Graham, J., Tang, G. X. M., and Dixon, D. (1998),"Influence of pressure, saturation, and temperature on the behaviour of unsaturated sand-bentonite", Canadian Geotechnical Journal, Vol.35, pp. 194-205. https://doi.org/10.1139/t97-093
  58. Zhao, C. G., Liu, Y., and Gao, F. P. (2010), "Work and energy equations and the principle of generalized effective stress for unsaturated soils", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.34, pp.920-36.
  59. Zheng, L., and Samper, J. (2008), "A coupled THMC model of FEBEX mock-up test", Physics and Chemistry of the Earth, Vol.33, pp.S486-S498. https://doi.org/10.1016/j.pce.2008.10.023
  60. Zienkiewicz, O. c., Chan, A. H. C., Pastor, M., Paul, D. K., and Shiomi, T. (1990), "Static and dyuamic behaviour of soils: A rational approach to quantitative solutions, I, Fully saturated problems", Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, Vol.429, pp.285-309.