Characteristics of PET-PEN Copolymer as a Material for Flexible Substrate

폴리(에틸렌 테레프탈레이트)/폴리(에틸렌 나프탈레이트) 공중합체의 유연기판 특성

  • Youm, Joo-Sun (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Kim, Jea-Hyun (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University) ;
  • Kang, Ho-Jong (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University)
  • 염주선 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과) ;
  • 김재현 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과) ;
  • 강호종 (광 에너지 소재 연구센터, 단국대학교 고분자시스템공학과)
  • Received : 2011.06.24
  • Accepted : 2011.07.22
  • Published : 2011.11.25

Abstract

The PET-PEN copolymers have been synthesized and the effect of their morphology on the physical properties of polyester flexible substrate was investigated. It was found that the block sequence of synthesized copolymer was varied depending upon DMT/NDC ratio in polymerization. Higher PET-PEN and PEN block sequence in polyester copolymer resulted in the increase of glass transition temperature and it caused the enhancement of dimensional stability as a polyester flexible substrate. The highest coefficient of thermal expansion(CTE) was obtained when DMT/NDC ratio is 50/50. Synthesized PET-PEN copolymer seems to be acceptable as a flexible substrate since it shows that their optical transmittance at 550 nm is over 80% and thermal weight loss at $280^{\circ}C$ for 1 hr is less than 0.4 wt%.

폴리에스테르 유연기판 제조를 위하여 PET-PEN 공중합체를 합성하고 이들의 형태학적 변화가 유연기판 특성에 미치는 영향을 살펴보았다. 합성된 PET-PEN 공중합체는 DMT/NDC의 조성비에 따라 공중합체 block sequence가 달라짐을 확인하였다. 공중합체에 PET-PEN과 PEN의 block sequence가 증가할수록 유리전이온도가 증가하며 이에 따라 유연기판의 치수안정성이 증가됨을 확인하였으며 DMT/NDC의 조성비가 50/50인 경우, 열팽창계수(CTE)가 최소가 됨을 확인하였다. 합성된 PET-PEN 공중합체는 광투과 특성이 80% 이상을 유지하며 1시간 동안 $280^{\circ}C$에서의 열안정성도 0.4 wt% 이내를 유지하여 유연기판으로 적용이 가능함을 알 수 있었다.

Keywords

Acknowledgement

Grant : 적층형 차세대 유기태양전지 소재 및 소자 개발

Supported by : 지식경제부

References

  1. G. P. Crawford, Flexible flat panel display technology, New York, Wiley, 2005.
  2. J. Lee, D. K. Hwang, J. M. Choi, K. Lee, J. H. Kim, S. Im, J. H. Park, and E. Kim, Appl. Phys. Lett., 87, 023504 (2005). https://doi.org/10.1063/1.1996839
  3. A. Nathan and B. R. Chalamala, Special Issues on Flexible Electronics Technology, Proceedings of the IEEE, 93, 1235 (2005).
  4. W. A. MacDonald, K. Rollins, R. Eveson, R. A. Rustin, and M. Handa, SID Dig., 34, 264 (2003). https://doi.org/10.1889/1.1832253
  5. M. Ishikawa, Polymer, 36, 2203 (1995). https://doi.org/10.1016/0032-3861(95)95297-E
  6. A. Toyota and M. Yamaguchi, Polym. Mater. Sci. Eng., 76, 24 (1997).
  7. J. Kim, I. Kim, Y. K. Kim, and H. J. Kang, Polymer(Korea), 34, 1(2010).
  8. R. S. Porter and L. H. Wang, Polymer, 33, 2019 (1992). https://doi.org/10.1016/0032-3861(92)90866-U
  9. E. Andresen and G. Zachmann, Colloid Polym. Sci., 272, 1352 (1994). https://doi.org/10.1007/BF00654165
  10. M. Suzuki, U. S. Patent 5,837,800 (1998).
  11. H. L. Tyan, Y. C. Liu, and K. H. Wei, Chem. Mater., 11, 1942 (1999). https://doi.org/10.1021/cm990187x
  12. Y. S. Chun, Y. S. Han, J. C. Hyun, and W. N. Kim, Polymer, 41, 8717 (2000). https://doi.org/10.1016/S0032-3861(00)00301-3
  13. T. Agag, T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001). https://doi.org/10.1016/S0032-3861(00)00824-7
  14. L. L. Beecroft and C. K. Ober, Chem. Mater., 9, 1302 (1997). https://doi.org/10.1021/cm960441a