Abstract
This paper reports results of a joint experimental and numerical investigation of the causes of near-transducer errors due to the combined effect of acoustic and ADCP-induced flow disturbance near the ADCP transducer. The laboratory study focused on an isolated ADCP (deployment without boat). Measurements of the flow disturbance produced by the ADCP in vertical and horizontal planes were obtained acquiring measurements with an Acoustic Doppler Velocimeter (ADV). Concurrent measurements with ADCP and ADV were made to infer additional near-transducer effects in the ADCP measurements. The numerical investigation was designed to extend the inquiry on the near-transducer potential errors when the ADCP is deployed from a boat. Large Eddy Simulation (LES) was conducted to obtain the extent and magnitude of the disturbances induced by the drag acting on a boat-mounted ADCP and by the blockage effect of the instrument and boat. It is found the velocities measured by the ADCP are biased low and differ substantially from the undisturbed channel flow solution within a limited layer beneath the instrument.
본 논문은 ADCP 계측기기 부근에서 음향학적인 그리고 ADCP 계기로 인해 발생하는 흐름의 교란에 기인한 속도 오차에 대한 원인들을 실험 및 수치모의를 통해 고찰한다. 실험실에서의 연구는 선박에 탑재되지 않은 독립된 ADCP에 대해 수행하였고, 수평 및 수직면에서 ADCP에 의해 유발되는 흐름 교란은 ADV를 이용하여 관측하였다. 그리고 ADCP와 ADV의 동시적 측정이 ADCP계측에 있어 추가적인 계측기기 부근의 영향들을 고려하기 위해 수행되었다. 수치모의는 ADCP가 선박에 탑재되었을 때 ADCP 계기 부근에 발생하는 잠재적인 오차에 대해 연구하기 위해 설계되었다. 수치해석 기법 사용된 LES (Large Eddy Simulation)는 선박에 탑재된 ADCP에 작용하는 항력과 계기와 선박의 막음효과에 의해 발생하는 흐름의 교란의 크기와 범위를 모의하였다. 결과로 ADCP에 의해 관측된 속도는 계측기기 하단의 제한된 범위 내에서 일정 정도 오차를 보였고 교란되지 않은 하천의 흐름 조건에 따라 오차가 실질적으로 다르게 나타났다.