Abstract
Option issuers generally utilize Dynamic Delta Hedging(DDH) technique to avoid the risk resulting from continuously changing option value. DDH duplicates payoff of option position by adjusting hedge position according to the delta value from Black-Scholes(BS) model in order to maintain risk neutral state. DDH, however, is not able to guarantee optimal hedging performance because of the weaknesses caused by impractical assumptions inherent in BS model. Therefore, this study presents a methodology for dynamic option hedge using artificial neural network(ANN) to enhance hedging performance and show the superiority of the proposed method using various computational experiments.
동적 델타 헤징(Dynamic Delta Hedging)이란 옵션 발행자가 옵션의 만기정산금액(payoff)을 지급하기 위해 주기적으로 델타에 근거한 헤지 포지션을 조절함으로써 옵션의 payoff를 복제하고 옵션 가치변화에 따른 위험을 회피하는 방법이다. 본 연구에서는 헤지에 있어서 주요 변수인 블랙-숄즈의 모형에 의해 산출된 델타의 대체 값을 찾기 위해 기계학습의 일종인 인공신경망 학습을 적용하여 옵션의 만기 시 헤지 비용의 최소화 및 차익 실현을 위한 방법론을 제시하고자 한다. 기초자산의 현재가격, 변동성, 무위험이자율, 만기 등의 시장 상황 변화에 따른 다양한 시나리오에 대한 실험을 통해 본 연구에서 제시하는 방법론의 성능을 분석하고 그 우수성을 보인다.