DOI QR코드

DOI QR Code

Scintillation Properties of Eu2+ ions doped LaCl3 Crystal

Eu2+ 이온을 도핑한 LaCl3 결정의 섬광 특성

  • Received : 2011.01.04
  • Accepted : 2011.02.10
  • Published : 2011.02.28

Abstract

In this paper, the scintillation properties of $LaCl_3:Eu^{2+}$ crystal were investigated as new scintillator. This scintillation material was grown by a Czochralski method. $LaCl_3:Eu^{2+}$ was determined to have a hexagonal $P_63$/m space group with cell parameters a = b = $7.48{\AA}$, c = $4.37{\AA}$. Under 335 nm UV excitation, the crystal shows a broad emission band between 370 nm and 640 nm wavelength range, peaking at 430 nm. At room temperature, the crystal exhibits one exponential decay time component. The component of scintillation time profile of the crystal emission decays with a $2.82{\pm}0.72{\mu}s$ time constant. The energy resolution of the crystal was measured to be 8.8% (FWHM) for $^{137}Cs$ 662 keV ${\gamma}$-rays.

본 Czochralski 방법으로 새로운 섬광체인 $LaCl_3:Eu^{2+}$ 결정을 육성하고, 육성된 섬광체의 섬광 특성을 조사하였다. 육성한 $LaCl_3:Eu^{2+}$ 결정 구조는 육방정계로서 $P_63$/m 공간군에 속함을 확인할 수 있었으며, 격자상수는 각각 a = b = $7.48{\AA}$, c = $4.37{\AA}$이었다. 335 nm로 여기시킨 $LaCl_3:Eu^{2+}$ 결정의 발광 스펙트럼 파장 범위는 약 370 ~ 640 nm 이었으며, 중심 파장은 430 nm이었다. 형광 감쇠 곡선은 $2.82{\pm}0.72{\mu}s$의 단일 성분으로 구성되었으며, $^{137}Cs$ 662 keV ${\gamma}$-선에 대한 에너지 분해능은 약 8.8%이었다.

Keywords

References

  1. Carel W. E. van Eijk, "Inorganic scintillators in medical imaging detectors", Nucl. Instrum. Meth., Phys. Res. Sec. A, Vol. 509, Iss. 1-3, pp.17-25, 2003. https://doi.org/10.1016/S0168-9002(03)01542-0
  2. Rainer Novotny, "Inorganic scintillators—a basic material for instrumentation in physics", Nucl. Instrum. Meth., Phys. Res. Sec. A, Vol. 537, Iss. 1-2, pp.1-5, 2005. https://doi.org/10.1016/j.nima.2004.07.221
  3. N. Grassi, G. Casini, M. Frosini, G. Tobia, and T. Marchi," PIXE characterization of CsI(Tl) scintillators used for particle detection in nuclear reactions", Nucl. Instrum. Meth., Phys. Res. Sec. B, Vol. 266, Iss. 10, pp.2383-2386, 2008. https://doi.org/10.1016/j.nimb.2008.03.012
  4. R. Hofstadter, "Alkali halide scintillation counter", Phys. Rev., Vol. 74, pp.100-101, 1948. https://doi.org/10.1103/PhysRev.74.100
  5. Marvin J. Weber, "Inorganic scintillator: today and tomorrow", J. Lumin., Vol. 100, pp.35-45, 2002. https://doi.org/10.1016/S0022-2313(02)00423-4
  6. Carel W.E. van Eijk, "Inorganic-scintillator development", Nucl. Instrum. Meth., A480, pp.1-14, 2001.
  7. S.E. Dorenzo, W.W. Moses, J.L. Cahoon, R.C.C. Perera and J.E. Litton, "Prospects for new inorganic scintillators", Nucl. Instr. Meth., NS-37, pp.203-208, 1990.
  8. S.C. Sabharwal, D.G. Desai, Sangeeta, et. al., "Preparation and characterization of radiation hard PbWO4 crystal scintillator", Nucl. Instrum. Meth., Phys. Res. Sec. A, Vol. 381, Iss. 2-3, pp. 320-323, 1996. https://doi.org/10.1016/S0168-9002(96)00744-9
  9. Ioannis Valais, Stratos David, Christos Michail, et. al., "Investigation of luminescent properties of LSO:Ce, LYSO:Ce and GSO:Ce crystal scintillators under low-energy γ-ray excitation used in nuclear imaging", Nucl. Instrum. Meth., Phys. Res. Sec. A, Vol. 581, Iss. 1-2, pp. 99-102, 2007, https://doi.org/10.1016/j.nima.2007.07.037
  10. O. Guillot-Noël, J. T. M. de Haas, P. Dorenbos, et. al., "Optical and scintillation properties of cerium-doped $LaCl_{3}$, $LuBr_{3}$ and $LuCl_{3}$", J. of Lumin., Vol. 85, No. 1-3, pp.21-35, 1999. https://doi.org/10.1016/S0022-2313(99)00063-0
  11. C.W.E. van Eijk, P. Dorenbos, E.V.D. van Loef, et. al., "Energy resolution of some new inorganic-scintillator gamma-ray detectors", Rad. Meas., Vol. 33, No. 5, pp.521-525, 2001. https://doi.org/10.1016/S1350-4487(01)00045-2
  12. R. Hawrami, A.K Batra, M.D Aggarwal, et. al., "New scintillator materials ($K_{2}CeBr_{5}$ and $Cs_{2}CeBr_{5}$)", J. Crys. Growth, Vol. 310, Iss. 7-9, pp.2099-2102, 2008. https://doi.org/10.1016/j.jcrysgro.2007.11.077
  13. E.D. Bourret-Courchesne, G. Bizarri, R. Borade, et. al., "$Eu^{2+}$-doped $Ba_{2}CsI_{5}$, a new high- performance scintillator", Nucl. Instrum. Meth., Phys. Res. Sec. A, Vol. 612, Iss. 1, pp.138-142, 2009. https://doi.org/10.1016/j.nima.2009.10.146
  14. D.H. Gahane, N.S. Kokode, P.L. Muthal, S.M. Dhopte, and S.V. Moharil "Luminescence of $Eu^{2+}$ in some iodides", Opt. Mat., Vol. 32, Iss. 1, pp.18-21, 2009. https://doi.org/10.1016/j.optmat.2009.05.012
  15. Czochralski, "A new method for the measurement of crystallisation rate of metals", J. Phys. Chem., Vol. 92, pp.219-221, 1918.
  16. Yanmin Qiao, Xinbo Zhang, Xiao Ye, Yan Chen, and Hai Guo, "Photoluminescent properties of $Sr_{2}SiO_{4}$:$Eu^{3+}$ and $Sr_{2}SiO_{4}$:$Eu^{2+}$ phosphors prepared by solid-state reaction method", J. Rare Earths, Vol. 27, Iss. 2, pp.323-326, 2009. https://doi.org/10.1016/S1002-0721(08)60243-4
  17. Nag A, and Kutty T.R.N., "The light induced valence change of europium in $Sr_{2}SiO_{4}$:Eu involving transient crystal structure", J. Mat. Chem., Vol. 14, No. 10, pp.1598-1602, 2004. https://doi.org/10.1039/b400515e
  18. C.W.E. van Eijk, P. Dorenbos, E.V.D. van Loef, K. Kramer, and H.U. Güdel, "Energy resolution of some new inorganic-scintillator gamma-ray detectors", Rad. Meas., Vol. 33, Iss. 5, pp.521-525, 2001. https://doi.org/10.1016/S1350-4487(01)00045-2