ISSN 1226-0657

A RELATIONSHIP BETWEEN THE LIPSCHITZ CONSTANTS APPEARING IN TAYLOR'S FORMULA

IOANNIS K. Argyros^a and Hongmin Ren^b

ABSTRACT. Taylor's formula is a powerful tool in analysis. In this study, we assume that an operator is m-times Fréchet-differentiable and satisfies a Lipschitz condition. We then obtain some Taylor formulas using only the Lipschitz constants. Applications are also provided.

1. INTRODUCTION

Taylor's formula has been used for a long time as a powerful tool in analysis to study the convergence of iterative processes but also in other areas [1]-[4].

In this study we assume that operator F is m-times (m a natural number) Fréchetdifferentiable on a non-empty subset D of a Banach space X with values in a Banach space Y. Furthermore, we assume that operator $F^{(m)}$ is Lipschitz continuous on D. Then, the constant is used to relate the corresponding Lipschitz constants for operators $F^{(i)}$, i = 1, 2, ..., m. Applications are also provided in this study.

2. TAYLOR FORMULAS

We need the following results on Taylor's formula for m-Fréchet-differentiable operators.

Theorem 2.1. Let $G : D \subseteq X \to Y$ be a m-times $(m \in N)$ Fréchet-differentiable operators defined on a non-empty subset D of a Banach space X with values in a Banach space Y.

Assume: (a) there exist a constant $e_{m+1} > 0$, and a convex subset D_0 of D such that for all $x, y \in D_0$

(2.1)
$$\|G^{(m)}(x) - G^{(m)}(y)\| \le e_{m+1} \|x - y\|_X.$$

 \bigodot 2011 Korean Soc. Math. Educ.

Received by the editors August 18, 2011. Revised November 3, 2011. Accepted Nov. 8, 2011. 2000 *Mathematics Subject Classification*. 65G99, 47H17, 49M15.

Key words and phrases. Taylor's formula, Fréchet-differentiable operator, iterative processes, Banach space.

Then, for all $x, y \in D_0$, the following estimate holds:

(2.2)
$$||G(x) - G(y) - \sum_{i=1}^{m} \frac{G^{(i)}(y)}{i!} (x - y)^{i}||_{Y} \le \frac{e_{m+1}}{(m+1)!} ||x - y||_{X}^{m+1}.$$

(b) If
$$D_0 = U(x_0, R) = \{x \in X : ||x - x_0|| \le R\} \subseteq D$$
 for some $x_0 \in D, R > 0$, and

(2.3)
$$||G^{(m)}(x) - G^{(m)}(x_0)|| \le e_{m+1}^0 ||x - x_0||_X \text{ for some } e_{m+1}^0 > 0$$

holds true on D_0 , then

(2.4)
$$||G^{(k)}(x)|| \le e_k \quad k = 0, 1, ..., m,$$

and

(2.5)
$$||G^{(k-1)}(x) - G^{(k-1)}(y)|| \le e_k ||x - y||_X, \quad k = 1, ..., m,$$

where, $e_m = \|G^{(m)}(x_0)\| + e_{m+1}^0 R$,

(2.6)
$$e_k = \|G^{(k)}(x_0)\| + e_{k+1}^0 R, \quad k = 0, 1, ..., m - 1.$$

(c) Under hypotheses of part (b) the following hold for all $x, y \in D_0$, and k = 1, 2, ..., m:

(2.7)
$$\|G(x) - G(y) - \sum_{i=1}^{k} \frac{G^{(i)}(y)}{i!} (x - y)^{i} \|_{Y} \le \frac{e_{k+1}}{(k+1)!} \|x - y\|_{X}^{k+1}.$$

Proof. (a) Let us denote by $\alpha \in Y$ the element given by

(2.8)
$$\alpha = G(x) - G(y) - \sum_{i=1}^{m} \frac{G^{(i)}(y)}{i!} (x - y)^{i}.$$

It is well known [3], [4] that there exists $\beta \in L(Y, \mathbf{R})$ the space of bounded linear operators from Y into \mathbf{R} so that

(2.9)
$$\|\beta\|_X = 1, \quad and \quad \beta(\alpha) = \|\alpha\|_Y.$$

It then follows from (2.8), and (2.9) that

(2.10)
$$\beta(\alpha) = |\beta(G(x)) - \beta(G(y)) - \sum_{i=1}^{m} \frac{\beta(G^{(i)}(y)(x-y)^i)}{i!}|.$$

Let us define on [0, 1] the real function

(2.11)
$$\gamma(\theta) = \beta(G(y + \theta(x - y))).$$

346

In view of the convexity of D_0 , $y + \theta(x - y) \in D_0$ if $x, y \in D_0$. That is function γ is well defined. It follows from the existence of the Fréchet-derivatives of operator Gthat functions

(2.12)
$$\gamma^{(k)}(\theta) = \beta(G^{(k)}(y+\theta(x-y))(x-y)^k) \quad k = 0, 1, ..., m$$

are well defined.

Using the integral form of Taylor's formula [3], [4], we have:

(2.13)
$$\gamma(1) = \gamma(0) + \sum_{i=1}^{m} \gamma^{(i)}(0) + \frac{1}{(m-1)!} \int_{0}^{1} \gamma^{(m)}(\theta) (1-\theta)^{p-1} d\theta.$$

We also need the estimates:

(2.14)
$$\int_0^1 (1-\theta)^{m-1} d\theta = \frac{1}{m},$$

and (0.15)

(2.15)

$$\int_0^1 \theta (1-\theta)^{m-1} d\theta = \int_0^1 (1-\theta)^{m-1} d\theta - \int_0^1 (1-\theta)^m d\theta = \frac{1}{m} - \frac{1}{m+1} = \frac{1}{m(m+1)}.$$
We then have:

We then have:

(2.16)
$$\begin{aligned} \|\alpha\|_{Y} &= \frac{1}{(m-1)!} \left| \int_{0}^{1} \gamma^{(m)}(\theta) (1-\theta)^{m-1} d\theta - \int_{0}^{1} \gamma^{(m)}(0) (1-\theta)^{m-1} d\theta \right| \\ &\leq \frac{1}{(m-1)!} \int_{0}^{1} |\gamma^{(m)}(\theta) - \gamma^{(m)}(0)| (1-\theta)^{m-1} d\theta, \end{aligned}$$

but

$$\begin{aligned} (2.17) \\ |\gamma^{(m)}(\theta) - \gamma^{(m)}(0)| &= |\beta(G^{(m)}(y + \theta(x - y))(x - y)^m) - \beta(G^{(m)}(y))(x - y)^m| \\ &= |\beta([G^{(m)}(y + \theta(x - y))(x - y)^m) - (G^{(m)}(y)])(x - y)^m| \\ &\leq \|\beta\|\|G^{(m)}(y + \theta(x - y))(x - y)^m) - (G^{(m)}(y)\|\|x - y\|_X^m) \end{aligned}$$

and consequently,

(2.18)
$$\begin{aligned} \|\alpha\|_{Y} &= \frac{e_{m+1}}{(m-1)!} \|x-y\|_{X}^{m+1} \int_{0}^{1} \theta (1-\theta)^{m-1} d\theta \\ &\leq \frac{e_{m+1}}{(m-1)!m(m+1)} \|x-y\|_{X}^{m+1}. \end{aligned}$$

That completes the proof of part (a).

(b) It follows from (2.3)

(2.19)
$$||G^{(m)}(x)|| \le ||G^{(m)}(x_0)|| + e_{m+1}^0 ||x - x_0|| = e_m.$$

By Langrange's theorem applied to $G^{(m-1)}:D_0\to L(X^{m-1},Y)$ we get

(2.20)
$$||G^{(m-1)}(x) - G^{(m-1)}(y)|| \le ||G^{(m)}(y + \theta(x - y))|| ||x - y||_X \quad \theta \in (0, 1).$$

If
$$x, y \in D_0$$
, and $\theta \in (0, 1)$ we get $y + \theta(x - y) \in D_0$ and consequently

$$\|G^{(m)}(y+\theta(x-y))\| \le e_m,$$

and

$$\|G^{(m-1)}(x) - G^{(m-1)}(y)\| \le e_m \|x - y\|_X.$$

Estimates (2.3) and (2.4) are obtained by continuing the same way.

(c) This part follows immediately from parts (a), and (b).

That completes the proof of the theorem.

3. Applications

The first application involves the most popular iterative process which is Newton's method.

We need a result on majorizing sequences for Newton's method

(3.1)
$$x_{n+1} = x_n - F'(x_n)^{-1}F(x_n) \quad (n \ge 0), \ (x_0 \in D)$$

for generating a sequence $\{x_n\}$ approximating a solution x^* of equation

$$F(x) = 0.$$

Lemma 3.1 ([3, Lemma 1.1.2, p. 14]). Assume: there exist constants $L_0 \ge 0$, $L \ge 0$, with $L_0 \le L$, and $\eta \ge 0$, such that:

(3.3)
$$q_0 = \overline{L} \eta \begin{cases} \leq \frac{1}{2}, & if \quad L_0 \neq 0, \\ < \frac{1}{2}, & if \quad L_0 = 0, \end{cases}$$

where,

(3.4)
$$\overline{L} = \frac{1}{8} \left(L + 4 L_0 + \sqrt{L^2 + 8 L_0 L} \right).$$

Then, sequence $\{t_k\}$ $(k \ge 0)$ given by

(3.5)
$$t_0 = 0, \quad t_1 = \eta, \quad t_{k+1} = t_k + \frac{L (t_k - t_{k-1})^2}{2 (1 - L_0 t_k)} \quad (k \ge 1),$$

is well defined, nondecreasing, bounded from above by $t^{\star\star}$ and converges to its unique least upper bound $t^{\star} \in [0, t^{\star\star}]$, where

(3.6)
$$t^{\star\star} = \frac{2\eta}{2-\delta},$$

(3.7)
$$1 \le \delta = \frac{4 L}{L + \sqrt{L^2 + 8 L_0 L}} < 2 \quad \text{for } L_0 \ne 0.$$

348

Moreover, the following estimates hold:

$$(3.8) L_0 t^* \le 1,$$

(3.9)
$$0 \le t_{k+1} - t_k \le \frac{\delta}{2} (t_k - t_{k-1}) \le \dots \le \left(\frac{\delta}{2}\right)^k \eta, \quad (k \ge 1),$$

(3.10)
$$t_{k+1} - t_k \le \left(\frac{\delta}{2}\right)^k (2 \ q_0)^{2^k - 1} \ \eta, \quad (k \ge 0),$$

(3.11)
$$0 \le t^* - t_k \le \left(\frac{\delta}{2}\right)^k \frac{(2 q_0)^{2^k - 1} \eta}{1 - (2 q_0)^{2^k}}, \quad (2 q_0 < 1), \quad (k \ge 0).$$

We also need the result related to Lemma 3.1.

Lemma 3.2. Let $m \ge 2$ be a natural number; α_i non-negative numbers, $i = 2, ..., m + 1, \eta > 0$ and define functions $P, \overline{L}_0, \overline{L}, H$ on $(0, +\infty)$ by

(3.12)
$$P(r) = \frac{\alpha_{m+1}}{(m+1)!} r^{m+1} + \frac{\alpha_m}{m!} r^m + \dots + \frac{\alpha_2}{2!} r^2 - r + \eta,$$

(3.13)
$$\overline{L}_0(r) = \frac{1+p'(r)}{r} = \frac{\alpha_{m+1}}{m!}r^{m-1} + \frac{\alpha_m}{(m-1)!}r^{m-2} + \ldots + \alpha_2,$$

(3.14)
$$\overline{L}(r) = P''(r) = \frac{\alpha_{m+1}}{(m-1)!}r^{m-1} + \frac{\alpha_m}{(m-2)!}r^{m-2} + \ldots + \alpha_2$$

and

(3.15)
$$H(r) = (\overline{L}(r) + 4\overline{L}_0(r) + \sqrt{\overline{L}^2(r)} + 8\overline{L}_0(r)\overline{L}(r))\eta - 4\overline{L}_0(r)\overline{L}(r)$$

Assume:

$$(3.16) H(\eta) < 0.$$

Then, function H has a unique positive zero r_0 such that

(3.17)
$$r_0 > \eta.$$

Moreover, for a fixed $r^{\star} \in (\eta, r_0]$, set

(3.18)
$$L_0 = \overline{L}_0(r^*), \quad and \quad L = \overline{L}(r^*).$$

Then, the conclusions of Lemma 3.1 hold for iteration $\{t_n\}$.

Proof. Function H is well defined, since \overline{L}_0 , and \overline{L} are positive functions. Moreover, H is increasing, since H'(r) > 0 for r > 0. It then follows from (3.12) that H(r) > 0 for sufficiently large r > 0. The existence, uniqueness of r_0 follows from the intermediate value theorem, and the monotonicity of function H, respectively. Using the definition of L_0, L , and H, we deduce that estimate (3.17) holds.

That completes the proof of lemma.

Hypothesis (3.16) can be replaced by the weaker, and more general

(3.19) Function H has a minimal positive zero r_0 .

We can show the following semilocal convergence result for Newton's method (3.1).

Proposition 3.3. Let $F : D \subseteq X \to Y$ be a m-times Fréchet-differentiable operator defined on a non-empty, open and convex subset D of a Banach space X with values in a Banach space Y. Assume there exists $x_0 \in D$, $e_{m+1} > 0$ such that

$$(3.20) F'(x_0)^{-1} \in D;$$

(3.21)
$$||F'(x_0)^{-1}(F'(x) - F'(y))|| \le e_{m+1}||x - y|| \quad for \ all \ x, y \in D;$$

hypotheses of Lemmas 2.1, 2.2 hold for

(3.22)
$$G = F'(x_0)^{-1}F, \quad \alpha_i = e_i \quad i = 1, 2, \dots, m+1;$$

$$(3.23) \qquad \qquad \overline{U}(x_0, \alpha^*) \subseteq D$$

and

$$(3.24) \qquad \qquad \alpha^{\star} = t^{\star} \text{ or } t^{\star \star} < r_0;$$

where t^*, t^{**} are given in Lemma 3.1, and r_0 is in Lemma 3.2.

Then, sequence $\{x_n\}$ generated by Newton's method (3.1) is well-defined, remains in $\overline{U}(x_0, \alpha^*)$ for all $n \ge 0$, and converges to a unique solution $x^* \in \overline{U}(x_0, \alpha^*)$ of equation F(x) = 0.

Moreover, the following estimates hold for all $n \ge 0$:

$$(3.25) ||x_{n+1} - x_n|| \le t_{n+1} - t_n$$

and

(3.26)
$$||x_n - x^*|| \le t^* - t_n.$$

350

Proof. Simply repeat the proof of Theorem by Argyros in [2], but use (2.2) for $x = x_{n+1}, y = x_n$ to obtain:

(3.27)
$$||F'(x_n)^{-1}F'(x_0)|| \le \frac{1}{1-L||x_n-x_0||} \le \frac{1}{1-Lt_n},$$

(3.28)
$$||F'(x_0)^{-1}F'(x_n)|| \le \frac{L}{2}||x_{n+1} - x_n||^2 \le \frac{L}{2}(t_{n+1} - t_n)^2,$$

and by (3.1)

(3.29)

$$||x_{n+1} - x_n|| \le ||F'(x_n)^{-1}F'(x_0)||F'(x_0)^{-1}F(x_n)|| \le \frac{L(t_{n+1} - t_n)^2}{2(1 - L_0 t_n)} = t_{n+1} - t_n.$$

hat completes the proof of the proposition.

That completes the proof of the proposition.

As a second application, consider $X = Y = \mathbf{R}$, $D = \overline{U}(0, 1)$, and define function F on D by

Then, for any $m \geq 1$,

(3.31)
$$a_{m+1} = e$$
, $||F'(x_0)^{-1}F^{(m)}(x_0)|| = 1$, $a_{m+1}^0 = e - 1$, $a_m = 1 + (e - 1)R$,
and

$$(3.32) a_k = 1 + eR, \quad k = 0, 1, 2, \dots, m - 1.$$

Estimates (2.2) and (2.7) can now be obtained with these choices.

References

- 1. I.K. Argyros: A Newton-Kantorovich theorem for equations involving m-Fréchet differentiable operators and applications in radiative transfer. J. Comput. Appl. Math. 131 (2001), 149-159.
- 2. _____: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004), 315-332.
- 3. ____: Advances on iterative procedures. Nova Science Publ., Inc., 2011.
- 4. L.M. Graves: Riemann integration and Taylor's theorem in general analysis. Trans. Amer. Math. Soc. 29 (1927), 163-177.

^aCameron University, Department of Mathematics Sciences, Lawton, OK 73505, USA Email address: iargyros@cameron.edu

^bCollege of Information and Electronics, Hangzhou 311402, Zhejiang, P. R. China Email address: rhm65@126.com