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A RELATIONSHIP BETWEEN THE LIPSCHITZ CONSTANTS
APPEARING IN TAYLOR’S FORMULA

Ioannis K. Argyros a and Hongmin Renb

Abstract. Taylor’s formula is a powerful tool in analysis. In this study, we as-
sume that an operator is m-times Fréchet-differentiable and satisfies a Lipschitz
condition. We then obtain some Taylor formulas using only the Lipschitz constants.
Applications are also provided.

1. Introduction

Taylor’s formula has been used for a long time as a powerful tool in analysis to
study the convergence of iterative processes but also in other areas [1]–[4].

In this study we assume that operator F is m-times (m a natural number) Fréchet-
differentiable on a non-empty subset D of a Banach space X with values in a Banach
space Y . Furthermore, we assume that operator F (m) is Lipschitz continuous on
D. Then, the constant is used to relate the corresponding Lipschitz constants for
operators F (i), i = 1, 2, ..., m. Applications are also provided in this study.

2. Taylor Formulas

We need the following results on Taylor’s formula for m-Fréchet-differentiable
operators.

Theorem 2.1. Let G : D ⊆ X → Y be a m-times (m ∈ N) Fréchet-differentiable
operators defined on a non-empty subset D of a Banach space X with values in a
Banach space Y .
Assume: (a) there exist a constant em+1 > 0, and a convex subset D0 of D such
that for all x, y ∈ D0

(2.1) ‖G(m)(x)−G(m)(y)‖ ≤ em+1‖x− y‖X .
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Then, for all x, y ∈ D0, the following estimate holds:

(2.2) ‖G(x)−G(y)−
m∑

i=1

G(i)(y)
i!

(x− y)i‖Y ≤ em+1

(m + 1)!
‖x− y‖m+1

X .

(b) If D0 = U(x0, R) = {x ∈ X : ‖x− x0‖ ≤ R} ⊆ D for some x0 ∈ D, R > 0, and

(2.3) ‖G(m)(x)−G(m)(x0)‖ ≤ e0
m+1‖x− x0‖X for some e0

m+1 > 0

holds true on D0, then

(2.4) ‖G(k)(x)‖ ≤ ek k = 0, 1, ..., m,

and

(2.5) ‖G(k−1)(x)−G(k−1)(y)‖ ≤ ek‖x− y‖X , k = 1, ..., m,

where, em = ‖G(m)(x0)‖+ e0
m+1R,

(2.6) ek = ‖G(k)(x0)‖+ e0
k+1R, k = 0, 1, ...,m− 1.

(c) Under hypotheses of part (b) the following hold for all x, y ∈ D0, and k =
1, 2, ..., m:

(2.7) ‖G(x)−G(y)−
k∑

i=1

G(i)(y)
i!

(x− y)i‖Y ≤ ek+1

(k + 1)!
‖x− y‖k+1

X .

Proof. (a) Let us denote by α ∈ Y the element given by

(2.8) α = G(x)−G(y)−
m∑

i=1

G(i)(y)
i!

(x− y)i.

It is well known [3], [4] that there exists β ∈ L(Y,R) the space of bounded linear
operators from Y into R so that

(2.9) ‖β‖X = 1, and β(α) = ‖α‖Y .

It then follows from (2.8), and (2.9) that

(2.10) β(α) = |β(G(x))− β(G(y))−
m∑

i=1

β(G(i)(y)(x− y)i)
i!

|.

Let us define on [0, 1] the real function

(2.11) γ(θ) = β(G(y + θ(x− y))).
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In view of the convexity of D0, y + θ(x− y) ∈ D0 if x, y ∈ D0. That is function γ is
well defined. It follows from the existence of the Fréchet-derivatives of operator G

that functions

(2.12) γ(k)(θ) = β(G(k)(y + θ(x− y))(x− y)k) k = 0, 1, ..., m

are well defined.
Using the integral form of Taylor’s formula [3], [4], we have:

(2.13) γ(1) = γ(0) +
m∑

i=1

γ(i)(0) +
1

(m− 1)!

∫ 1

0
γ(m)(θ)(1− θ)p−1dθ.

We also need the estimates:

(2.14)
∫ 1

0
(1− θ)m−1dθ =

1
m

,

and
(2.15)∫ 1

0
θ(1− θ)m−1dθ =

∫ 1

0
(1− θ)m−1dθ −

∫ 1

0
(1− θ)mdθ =

1
m
− 1

m + 1
=

1
m(m + 1)

.

We then have:

(2.16)
‖α‖Y = 1

(m−1)!

∣∣∣∣
∫ 1

0
γ(m)(θ)(1− θ)m−1dθ −

∫ 1

0
γ(m)(0)(1− θ)m−1dθ

∣∣∣∣

≤ 1
(m−1)!

∫ 1

0
|γ(m)(θ)− γ(m)(0)|(1− θ)m−1dθ,

but
(2.17)
|γ(m)(θ)− γ(m)(0)| = |β(G(m)(y + θ(x− y))(x− y)m)− β(G(m)(y))(x− y)m|

= |β([G(m)(y + θ(x− y))(x− y)m)− (G(m)(y)])(x− y)m|
≤ ‖β‖‖G(m)(y + θ(x− y))(x− y)m)− (G(m)(y)‖‖x− y‖m

X

and consequently,

(2.18)
‖α‖Y = em+1

(m−1)!‖x− y‖m+1
X

∫ 1

0
θ(1− θ)m−1dθ

≤ em+1

(m−1)!m(m+1)‖x− y‖m+1
X .

That completes the proof of part (a).
(b) It follows from (2.3)

(2.19) ‖G(m)(x)‖ ≤ ‖G(m)(x0)‖+ e0
m+1‖x− x0‖ = em.

By Langrange’s theorem applied to G(m−1) : D0 → L(Xm−1, Y ) we get

(2.20) ‖G(m−1)(x)−G(m−1)(y)‖ ≤ ‖G(m)(y + θ(x− y))‖‖x− y‖X θ ∈ (0, 1).
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If x, y ∈ D0, and θ ∈ (0, 1) we get y + θ(x− y) ∈ D0 and consequently

‖G(m)(y + θ(x− y))‖ ≤ em,

and
‖G(m−1)(x)−G(m−1)(y)‖ ≤ em‖x− y‖X .

Estimates (2.3) and (2.4) are obtained by continuing the same way.
(c) This part follows immediately from parts (a), and (b).
That completes the proof of the theorem. ¤

3. Applications

The first application involves the most popular iterative process which is Newton’s
method.

We need a result on majorizing sequences for Newton’s method

(3.1) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0), (x0 ∈ D)

for generating a sequence {xn} approximating a solution x? of equation

(3.2) F (x) = 0.

Lemma 3.1 ([3, Lemma 1.1.2, p. 14]). Assume:
there exist constants L0 ≥ 0, L ≥ 0, with L0 ≤ L, and η ≥ 0, such that:

(3.3) q0 = L η





≤ 1
2
, if L0 6= 0,

<
1
2
, if L0 = 0,

where,

(3.4) L =
1
8

(
L + 4 L0 +

√
L2 + 8 L0 L

)
.

Then, sequence {tk} (k ≥ 0) given by

(3.5) t0 = 0, t1 = η, tk+1 = tk +
L (tk − tk−1)2

2 (1− L0 tk)
(k ≥ 1),

is well defined, nondecreasing, bounded from above by t?? and converges to its unique
least upper bound t? ∈ [0, t??], where

(3.6) t?? =
2 η

2− δ
,

(3.7) 1 ≤ δ =
4 L

L +
√

L2 + 8 L0 L
< 2 for L0 6= 0.
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Moreover, the following estimates hold:

(3.8) L0 t? ≤ 1,

(3.9) 0 ≤ tk+1 − tk ≤ δ

2
(tk − tk−1) ≤ · · · ≤

(
δ

2

)k

η, (k ≥ 1),

(3.10) tk+1 − tk ≤
(

δ

2

)k

(2 q0)2
k−1 η, (k ≥ 0),

(3.11) 0 ≤ t? − tk ≤
(

δ

2

)k (2 q0)2
k−1 η

1− (2 q0)2
k , (2 q0 < 1), (k ≥ 0).

We also need the result related to Lemma 3.1.

Lemma 3.2. Let m ≥ 2 be a natural number; αi non-negative numbers, i =
2, ..., m + 1, η > 0 and define functions P, L0, L,H on (0, +∞) by

(3.12) P (r) =
αm+1

(m + 1)!
rm+1 +

αm

m!
rm + . . . +

α2

2!
r2 − r + η,

(3.13) L0(r) =
1 + p′(r)

r
=

αm+1

m!
rm−1 +

αm

(m− 1)!
rm−2 + . . . + α2,

(3.14) L(r) = P ′′(r) =
αm+1

(m− 1)!
rm−1 +

αm

(m− 2)!
rm−2 + . . . + α2

and

(3.15) H(r) = (L(r) + 4L0(r) +
√

L
2(r) + 8L0(r)L(r))η − 4.

Assume:

(3.16) H(η) < 0.

Then, function H has a unique positive zero r0 such that

(3.17) r0 > η.

Moreover, for a fixed r? ∈ (η, r0], set

(3.18) L0 = L0(r?), and L = L(r?).

Then, the conclusions of Lemma 3.1 hold for iteration {tn}.
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Proof. Function H is well defined, since L0, and L are positive functions. Moreover,
H is increasing, since H ′(r) > 0 for r > 0. It then follows from (3.12) that H(r) >

0 for sufficiently large r > 0. The existence, uniqueness of r0 follows from the
intermediate value theorem, and the monotonicity of function H, respectively. Using
the definition of L0, L, and H, we deduce that estimate (3.17) holds.

That completes the proof of lemma. ¤

Hypothesis (3.16) can be replaced by the weaker, and more general

(3.19) Function H has a minimal positive zero r0.

We can show the following semilocal convergence result for Newton’s method
(3.1).

Proposition 3.3. Let F : D ⊆ X → Y be a m-times Fréchet-differentiable operator
defined on a non-empty, open and convex subset D of a Banach space X with values
in a Banach space Y . Assume there exists x0 ∈ D, em+1 > 0 such that

(3.20) F ′(x0)−1 ∈ D;

(3.21) ‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ em+1‖x− y‖ for all x, y ∈ D;

hypotheses of Lemmas 2.1, 2.2 hold for

(3.22) G = F ′(x0)−1F, αi = ei i = 1, 2, . . . , m + 1;

(3.23) U(x0, α
?) ⊆ D

and

(3.24) α? = t? or t?? < r0;

where t?, t?? are given in Lemma 3.1, and r0 is in Lemma 3.2.
Then, sequence {xn} generated by Newton’s method (3.1) is well-defined, remains

in U(x0, α
?) for all n ≥ 0, and converges to a unique solution x? ∈ U(x0, α

?) of
equation F (x) = 0.

Moreover, the following estimates hold for all n ≥ 0:

(3.25) ‖xn+1 − xn‖ ≤ tn+1 − tn

and

(3.26) ‖xn − x?‖ ≤ t? − tn.
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Proof. Simply repeat the proof of Theorem by Argyros in [2], but use (2.2) for
x = xn+1, y = xn to obtain:

(3.27) ‖F ′(xn)−1F ′(x0)‖ ≤ 1
1− L‖xn − x0‖ ≤

1
1− Ltn

,

(3.28) ‖F ′(x0)−1F ′(xn)‖ ≤ L

2
‖xn+1 − xn‖2 ≤ L

2
(tn+1 − tn)2,

and by (3.1)
(3.29)

‖xn+1 − xn‖ ≤ ‖F ′(xn)−1F ′(x0)‖F ′(x0)−1F (xn)‖ ≤ L(tn+1 − tn)2

2(1− L0tn)
= tn+1 − tn.

That completes the proof of the proposition. ¤

As a second application, consider X = Y = R, D = U(0, 1), and define function
F on D by

(3.30) F (x) = ex.

Then, for any m ≥ 1,

(3.31) am+1 = e, ‖F ′(x0)−1F (m)(x0)‖ = 1, a0
m+1 = e− 1, am = 1 + (e− 1)R,

and

(3.32) ak = 1 + eR, k = 0, 1, 2, . . . , m− 1.

Estimates (2.2) and (2.7) can now be obtained with these choices.
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entiable operators and applications in radiative transfer. J. Comput. Appl. Math. 131
(2001), 149–159.

2. : On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl.
Math. 169 (2004), 315–332.

3. : Advances on iterative procedures. Nova Science Publ., Inc., 2011.
4. L.M. Graves: Riemann integration and Taylor’s theorem in general analysis. Trans.

Amer. Math. Soc. 29 (1927), 163–177.

aCameron university, Department of Mathematics Sciences, Lawton, OK 73505, USA
Email address: iargyros@cameron.edu

bCollege of Information and Electronics, Hangzhou 311402, Zhejiang, P.R.China
Email address: rhm65@126.com


