A REFINEMENT OF LYAPUNOV-TYPE INEQUALITY FOR A CLASS OF NONLINEAR SYSTEMS

Yong-In Kim

Abstract

Some new Lyapunov-type inequalities for a class of nonlinear differential systems, which are natural refinements and generalizations of the well-known Lyapunov inequality for linear second order differential equations, are given. The results of this paper cover some previous results on this topic.

1. Introduction

As is well-known, the Lyapunov inequality [1] for the following second-order linear differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)+q(t) x(t)=0 \tag{1}
\end{equation*}
$$

states that if $q \in C[a, b]$ and $x(t)$ is a solution of (1) such that $x(a)=x(b)=$ $0, x(t) \neq 0$ for $t \in(a, b)$, then the following inequality holds:

$$
\begin{equation*}
(b-a) \int_{a}^{b} q^{+}(t) d t>4 \tag{2}
\end{equation*}
$$

where $q^{+}(t)=\max \{q(t), 0\}$ and the constant 4 is sharp, which means that it can not be replaced by a larger number. In [5], Hartman obtained the following inequality:

$$
\begin{equation*}
\int_{a}^{b} q^{+}(t)(t-a)(b-t) d t>(b-a), \tag{3}
\end{equation*}
$$

which implies (2) since for $t \in[a, b]$, we have

$$
(t-a)(b-t) \leq \frac{(b-a)^{2}}{4}
$$

Over the past few decades, there have been many new proofs and generalizations of the inequality (2). It has been generalized to nonlinear second order equations

[^0][$3,10,11$], to delay differential equations[2], to higher order differential equations [$9,13,14$], to discrete linear Hamiltonian systems [4], and so on [6, 7, 8, 12].

In this paper, inspired by the work of Hartman [5], we obtain some new Lyapunovtype inequalities which cover (2) and (3) and some previous results on this topic.

2. Main Result and its Proof

Consider the following nonlinear differential system:

$$
\begin{align*}
x^{\prime} & =a_{1}(t) x+a_{2}(t) \phi_{p^{\prime}}(y), \tag{4}\\
y^{\prime} & =-a_{3}(t) \phi_{p}(x)-a_{1}(t) y,
\end{align*}
$$

where $a_{k} \in C([a, b], \mathbb{R})$ for $1 \leq k \leq 3, a_{2}(t)>0 \forall t \in[a, b], \phi_{p}(u)=|u|^{p-2} u$ with $p>1$ and $p^{\prime}=\frac{p}{p-1}>1$ is the exponent conjugate to p.

The main result of this paper is the following theorem:
Theorem 1. If $x(t)$ is a nonzero solution of (4) such that $x(a)=x(b)=0$ and $x(t) \neq 0 \forall t \in(a, b)$, then the following inequalities hold:

$$
\begin{aligned}
& 4^{1-p}\left(\int_{a}^{b} a_{3}^{+}(t) e^{p A_{1}(t)} d t\right)^{2}\left(\int_{a}^{b} g(t) d t\right)^{2(p-1)} \\
& >\int_{a}^{b} a_{3}^{+}(t) e^{p A_{1}(t)} d t \int_{a}^{b} a_{3}^{+}(t) e^{p A_{1}(t)}\left(\int_{a}^{t} g(s) d s \int_{t}^{b} g(s) d s\right)^{p-1} d t \\
& >4,
\end{aligned}
$$

where

$$
A_{1}(t)=\int_{a}^{t} a_{1}(s) d s, \quad g(t)=e^{-p^{\prime} A_{1}(t)} a_{2}(t) .
$$

If $a_{1}(t) \equiv 0$ in the system (4), then (4) reduces to the following nonlinear second order equation:

$$
\begin{equation*}
\left(r(t) \phi_{p}\left(x^{\prime}\right)\right)^{\prime}+q(t) \phi_{p}(x)=0, \tag{6}
\end{equation*}
$$

where $r(t)=\frac{1}{a_{2}^{p-1}(t)}, q(t)=a_{3}(t)$. Hence, the inequalities in (5) reduce to the inequalities in the following Corollary 1.

Corollary 1. If $x(t)$ is a solution of (6) such that $x(a)=x(b)=0$ and $x(t) \neq$ $0 \forall t \in(a, b)$, then we have

$$
\begin{align*}
& 4^{1-p}\left(\int_{a}^{b} q^{+}(t) d t\right)^{2}\left(\int_{a}^{b} \frac{d t}{r^{\frac{1}{p-1}}(t)}\right)^{2(p-1)} \\
& >\int_{a}^{b} q^{+}(t) d t \int_{a}^{b} q^{+}(t)\left(\int_{a}^{t} \frac{d s}{r^{\frac{1}{p-1}}(s)} \int_{t}^{b} \frac{d s}{r^{\frac{1}{p-1}}(s)}\right)^{p-1} d t \tag{7}\\
& >4
\end{align*}
$$

In particular, if $r(t) \equiv 1$ in the equation (6), then (6) reduces to the following equation

$$
\begin{equation*}
\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime}+q(t) \phi_{p}(x)=0 \tag{8}
\end{equation*}
$$

and the inequalities in (7) further reduce to the inequalities in the following Corollary 2 :

Corollary 2. If $x(t)$ is a solution of (8) such that $x(a)=x(b)=0$ and $x(t) \neq$ $0 \forall t \in(a, b)$, then we have

$$
\begin{align*}
& 4^{1-p}\left(\int_{a}^{b} q^{+}(t) d t\right)^{2}(b-a)^{2(p-1)} \\
& >\int_{a}^{b} q^{+}(t) d t \int_{a}^{b} q^{+}(t)[(t-a)(b-t)]^{p-1} d t \tag{9}\\
& >4
\end{align*}
$$

Remark 1. Note that if $p=2$, then (8) reduces to the equation (1). Thus, the inequalities $(5),(7)$ and (9) are natural refinements and generalizations of the inequalities (2) and (3).

Proof of Theorem 1. Multiplying the first equation of (4) by $y(t)$ and the second one by $x(t)$, and adding the results, we get

$$
(x(t) y(t))^{\prime}=a_{2}(t)|y(t)|^{p^{\prime}}-a_{3}(t)|x(t)|^{p} .
$$

Integrating the above equation from a to b and using $x(a)=x(b)=0$, we obtain

$$
\begin{equation*}
\int_{a}^{b} a_{2}(t)|y(t)|^{p^{\prime}} d t=\int_{a}^{b} a_{3}(t)|x(t)|^{p} d t \tag{10}
\end{equation*}
$$

For any $t \in(a, b)$, by using the assumption $x(a)=x(b)=0$, we obtain from (4) that

$$
\begin{align*}
x(t) & =e^{\int_{a}^{t} a_{1}(s) d s} \int_{a}^{t} e^{-\int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) \phi_{p^{\prime}}(y(s)) d s \\
& =-e^{\int_{a}^{t} a_{1}(s) d s} \int_{t}^{b} e^{-\int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) \phi_{p^{\prime}}(y(s)) d s . \tag{11}
\end{align*}
$$

Now applying the Hölder inequality to the first equation of (11), we get

$$
\begin{equation*}
|x(t)| \leq e^{\int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{\frac{1}{p^{\prime}}}\left(\int_{a}^{t} a_{2}(s)|y(s)|^{p^{\prime}} d s\right)^{\frac{1}{p}} \tag{12}
\end{equation*}
$$

Similarly, from the second equation of (11) we have

$$
\begin{equation*}
|x(t)| \leq e^{\int_{a}^{t} a_{1}(s) d s}\left(\int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{\frac{1}{p^{\prime}}}\left(\int_{t}^{b} a_{2}(s)|y(s)|^{p^{\prime}} d s\right)^{\frac{1}{p}} \tag{13}
\end{equation*}
$$

Let $d \in(a, b)$ be any fixed number. Then by using (12), we obtain

$$
\begin{align*}
& \int_{a}^{d} a_{3}^{+}(t)|x(t)|^{p} d t \\
& \leq \int_{a}^{d} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} \int_{a}^{t} a_{2}(s)|y(s)|^{p^{\prime}} d s d t \tag{14}\\
& \leq \int_{a}^{d} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \int_{a}^{d} a_{2}(t)|y(t)|^{p^{\prime}} d t
\end{align*}
$$

Similarly by using (13), we obtain

$$
\begin{align*}
& \int_{d}^{b} a_{3}^{+}(t)|x(t)|^{p} d t \\
& \leq \int_{d}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} \int_{t}^{b} a_{2}(s)|y(s)|^{p^{\prime}} d s d t \tag{15}\\
& \leq \int_{d}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \int_{d}^{b} a_{2}(t)|y(t)|^{p^{\prime}} d t
\end{align*}
$$

It is easy to see that the function

$$
h_{1}(x)=\int_{a}^{x} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t
$$

is nondecreasing for $x \in(a, b)$ and the function

$$
h_{2}(x)=\int_{x}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t
$$

is nonincreasing for $x \in(a, b)$. Now since $h_{1}(a)=h_{2}(b)=0, h_{1}(b)>0$ and $h_{2}(a)>$ 0 , it follows that there exists at least one $c \in(a, b)$ such that $h_{1}(c)=h_{2}(c)>0$, that is,

$$
\begin{align*}
& \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \\
& =\int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \tag{16}
\end{align*}
$$

Let $d=c \in(a, b)$ in (14) and (15). Then (16) holds and by adding (14) and (15), and using (10), we obtain the following:

$$
\begin{align*}
& \int_{a}^{b} a_{3}^{+}(t)|x(t)|^{p} d t \\
& <\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \int_{a}^{c} a_{2}(t)|y(t)|^{p^{\prime}} d t \\
& \quad+\int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \int_{c}^{b} a_{2}(t)|y(t)|^{p^{\prime}} d t \\
& =\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \int_{a}^{b} a_{2}(t)|y(t)|^{p^{\prime}} d t \tag{17}\\
& =\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \int_{a}^{b} a_{3}(t)|x(t)|^{p} d t \\
& \leq \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \int_{a}^{b} a_{3}^{+}(t)|x(t)|^{p} d t .
\end{align*}
$$

The first strict inequality in the above inequalities holds since $x(t)$ is not a constant solution (zero solution) of (4) and hence at least one inequalities in (14) or (15) is strict. From the equation (10), we have

$$
\int_{a}^{b} a_{3}^{+}(t)|x(t)|^{p} d t>0
$$

which, together with (17), yields

$$
\begin{align*}
& 1<\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \tag{18}\\
& =\int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t
\end{align*}
$$

From (18), we obtain

$$
\begin{align*}
& 1<\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t\left(\int_{a}^{c} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1} \\
& 1<\int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t\left(\int_{c}^{b} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1} \tag{19}
\end{align*}
$$

which implies that

$$
\begin{align*}
& \frac{1}{\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t}<\left(\int_{a}^{c} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1} \\
& \frac{1}{\int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t}<\left(\int_{c}^{b} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1} . \tag{20}
\end{align*}
$$

It follows from the first inequality of (18) that

$$
\begin{align*}
& \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s \int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \tag{21}\\
& \geq \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s \int_{c}^{b} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1} d t \\
& >\left(\int_{c}^{b} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1} .
\end{align*}
$$

Similarly, from the second inequality of (18) we can show that

$$
\begin{align*}
& \int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s \int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \tag{22}\\
& \geq \int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{c} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t \int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \\
& >\left(\int_{a}^{c} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1} .
\end{align*}
$$

Adding (21) and (22), and applying (20), we obtain

$$
\begin{align*}
& \int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s \int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{p-1} d t \tag{23}\\
& >\left(\int_{a}^{c} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1}+\left(\int_{c}^{b} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{p-1} \\
& >\frac{1}{\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t}+\frac{1}{\int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t} \\
& \geq \frac{4}{\int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t} .
\end{align*}
$$

Since $A B \leq \frac{(A+B)^{2}}{4}$ for any real numbers A and B, we have

$$
\begin{align*}
& \int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s \int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s \\
& \leq \frac{1}{4}\left(\int_{a}^{t} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s+\int_{t}^{b} e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) d s\right)^{2} \tag{24}\\
& =\frac{1}{4}\left(\int_{a}^{b} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{2} .
\end{align*}
$$

Substituting (24) into (23), we get finally the result of Theorem 1

$$
\begin{aligned}
& 4^{1-p}\left(\int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t\right)^{2}\left(\int_{a}^{b} e^{-p^{\prime} \int_{a}^{t} a_{1}(s) d s} a_{2}(t) d t\right)^{2(p-1)} \\
& >\int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s} d t \int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) d s}\left(\int_{a}^{t} g(s) d s \int_{t}^{b} g(s) d s\right)^{p-1} d t \\
& >4
\end{aligned}
$$

where

$$
g(s)=e^{-p^{\prime} \int_{a}^{s} a_{1}(\tau) d \tau} a_{2}(s) .
$$

References

1. A.M. Lyapunov: Sur une série relative a la théorie des équations différentielles linéaires avec coeficient périodiques. C. R. Math. Acad. Sci., Paris 123 (1896), 1248-1252.
2. S.S. Cheng: Lyapunov inequalities for differential and difference equations. Fasc. Math. 23 (1991), 25-41.
3. S.B. Eliason: A Lyapunov type inequality for certain nonlinear differential equation. J. London Math. Soc. 3 (1970), 461-466.
4. G. Guseinov \& B. Kaymakçalan: Lyapunov inequalities for discrete linear Hamiltonian system. Comp. Math. Appl. 45 (2003), 1399-1416.
5. P. Hartman: Ordinary Differential Equations, second ed. Birkhauser, Boston, 1982.
6. C. Lee, C. Yeh, C. Hong \& R.P. Agarwal: Lyapunov and Wirtinger inequalities. Appl. Math. Lett. 17 (2004), 847-853.
7. W. Leighton: On Lyapunov's inequality. Proc. Amer. Math. Soc. 33 (1972), 627-628.
8. Z. Nehari: On an inequality of Lyapunov, In "Studies in Mathematical Analysis and Related Topics". pp. 256-261, Stanford Univ. Press, Stanford, CA, 1962.
9. B.G. Pachpatte: On Lyapunov-type inequalities for certain higher order differential equations. J. Math. Anal. Appl. 195 (1995), 527-536.
10. A. Tiryaki, M. Unal \& D. Çakmak: Lyapunov-type inequalities for nonlinear systems. J. Math. Anal. Appl. 332 (2007), 497-511.
11. X. Wang: Lyapunov type inequalities for second order half-linear differential equations. submitted to J. Math. Anal. Appl.
12. X. Yang: On inequalities of Lyapunov type. Appl.Math. Computation. 134 (2003), 293300.
13. X. Yang \& K. Lo: Lyapunov-type inequality for a class of even-order differential equations. Appl. Math. Computation 245 (2010), 3884-3890.
14. X. Yang, Y. Kim \& K. Lo: Lyapunov-type inequality for a class of odd-order differential equations. J. Comput. Appl. Math. 234 (2010), 2962-2969.

Department of Mathematics, University of Ulsan, Ulsan 689-749, Korea
Email address: yikim@mail.ulsan.ac.kr

[^0]: Received by the editors July 26, 2011. Accepted October 20, 2011.
 2000 Mathematics Subject Classification. 34A12, 34A34.
 Key words and phrases. Lyapunov-type inequality, nonlinear differential system.

