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A REFINEMENT OF LYAPUNOV-TYPE INEQUALITY
FOR A CLASS OF NONLINEAR SYSTEMS

Yong-In Kim

Abstract. Some new Lyapunov-type inequalities for a class of nonlinear differen-
tial systems, which are natural refinements and generalizations of the well-known
Lyapunov inequality for linear second order differential equations, are given. The
results of this paper cover some previous results on this topic.

1. Introduction

As is well-known, the Lyapunov inequality [1] for the following second-order linear
differential equation

(1) x′′(t) + q(t)x(t) = 0

states that if q ∈ C[a, b] and x(t) is a solution of (1) such that x(a) = x(b) =
0, x(t) 6= 0 for t ∈ (a, b), then the following inequality holds:

(2) (b− a)
∫ b

a
q+(t)dt > 4,

where q+(t) = max{q(t), 0} and the constant 4 is sharp, which means that it can not
be replaced by a larger number. In [5], Hartman obtained the following inequality:

(3)
∫ b

a
q+(t)(t− a)(b− t)dt > (b− a),

which implies (2) since for t ∈ [a, b], we have

(t− a)(b− t) ≤ (b− a)2

4
.

Over the past few decades, there have been many new proofs and generalizations
of the inequality (2). It has been generalized to nonlinear second order equations
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[3, 10, 11], to delay differential equations[2], to higher order differential equations
[9, 13, 14], to discrete linear Hamiltonian systems [4], and so on [6, 7, 8, 12].

In this paper, inspired by the work of Hartman [5], we obtain some new Lyapunov-
type inequalities which cover (2) and (3) and some previous results on this topic.

2. Main Result and its Proof

Consider the following nonlinear differential system:

(4)
x′ = a1(t)x + a2(t)φp′(y),

y′ = −a3(t)φp(x)− a1(t)y,

where ak ∈ C([a, b], R) for 1 ≤ k ≤ 3, a2(t) > 0∀ t ∈ [a, b], φp(u) = |u|p−2u with
p > 1 and p′ = p

p−1 > 1 is the exponent conjugate to p.

The main result of this paper is the following theorem:

Theorem 1. If x(t) is a nonzero solution of (4) such that x(a) = x(b) = 0 and
x(t) 6= 0∀ t ∈ (a, b), then the following inequalities hold:

(5)

41−p

(∫ b

a
a+

3 (t)epA1(t)dt

)2 (∫ b

a
g(t)dt

)2(p−1)

>

∫ b

a
a+

3 (t)epA1(t)dt

∫ b

a
a+

3 (t)epA1(t)

(∫ t

a
g(s)ds

∫ b

t
g(s)ds

)p−1

dt

> 4,

where

A1(t) =
∫ t

a
a1(s)ds, g(t) = e−p′A1(t)a2(t).

If a1(t) ≡ 0 in the system (4), then (4) reduces to the following nonlinear second
order equation:

(6)
(
r(t)φp(x′)

)′ + q(t)φp(x) = 0,

where r(t) = 1

ap−1
2 (t)

, q(t) = a3(t). Hence, the inequalities in (5) reduce to the

inequalities in the following Corollary 1.

Corollary 1. If x(t) is a solution of (6) such that x(a) = x(b) = 0 and x(t) 6=
0∀ t ∈ (a, b), then we have
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(7)

41−p

(∫ b

a
q+(t)dt

)2
(∫ b

a

dt

r
1

p−1 (t)

)2(p−1)

>

∫ b

a
q+(t)dt

∫ b

a
q+(t)

(∫ t

a

ds

r
1

p−1 (s)

∫ b

t

ds

r
1

p−1 (s)

)p−1

dt

> 4.

In particular, if r(t) ≡ 1 in the equation (6), then (6) reduces to the following
equation

(8) (φp(x′))′ + q(t)φp(x) = 0,

and the inequalities in (7) further reduce to the inequalities in the following Corollary
2:

Corollary 2. If x(t) is a solution of (8) such that x(a) = x(b) = 0 and x(t) 6=
0∀ t ∈ (a, b), then we have

(9)

41−p

(∫ b

a
q+(t)dt

)2

(b− a)2(p−1)

>

∫ b

a
q+(t)dt

∫ b

a
q+(t) [(t− a)(b− t)]p−1 dt

> 4.

Remark 1. Note that if p = 2, then (8) reduces to the equation (1). Thus,
the inequalities (5), (7) and (9) are natural refinements and generalizations of the
inequalities (2) and (3).

Proof of Theorem 1. Multiplying the first equation of (4) by y(t) and the second
one by x(t), and adding the results, we get

(x(t)y(t))′ = a2(t)|y(t)|p′ − a3(t)|x(t)|p.
Integrating the above equation from a to b and using x(a) = x(b) = 0, we obtain

(10)
∫ b

a
a2(t)|y(t)|p′dt =

∫ b

a
a3(t)|x(t)|pdt.

For any t ∈ (a, b), by using the assumption x(a) = x(b) = 0, we obtain from (4)
that

(11)
x(t) = e

∫ t
a a1(s)ds

∫ t

a
e−

∫ s
a a1(τ)dτa2(s)φp′(y(s))ds

= −e
∫ t

a a1(s)ds

∫ b

t
e−

∫ s
a a1(τ)dτa2(s)φp′(y(s))ds.
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Now applying the Hölder inequality to the first equation of (11), we get

(12) |x(t)| ≤ e
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

) 1
p′

(∫ t

a
a2(s)|y(s)|p′ds

) 1
p

.

Similarly, from the second equation of (11) we have

(13) |x(t)| ≤ e
∫ t

a a1(s)ds

(∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

) 1
p′ (∫ b

t
a2(s)|y(s)|p′ds

) 1
p

.

Let d ∈ (a, b) be any fixed number. Then by using (12), we obtain

(14)

∫ d

a
a+

3 (t)|x(t)|pdt

≤
∫ d

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1 ∫ t

a
a2(s)|y(s)|p′dsdt

≤
∫ d

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

∫ d

a
a2(t)|y(t)|p′dt.

Similarly by using (13), we obtain

(15)

∫ b

d
a+

3 (t)|x(t)|pdt

≤
∫ b

d
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1 ∫ b

t
a2(s)|y(s)|p′dsdt

≤
∫ b

d
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

∫ b

d
a2(t)|y(t)|p′dt.

It is easy to see that the function

h1(x) =
∫ x

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

is nondecreasing for x ∈ (a, b) and the function

h2(x) =
∫ b

x
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

is nonincreasing for x ∈ (a, b). Now since h1(a) = h2(b) = 0, h1(b) > 0 and h2(a) >

0, it follows that there exists at least one c ∈ (a, b) such that h1(c) = h2(c) > 0,
that is,

(16)

∫ c

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

=
∫ b

c
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt.
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Let d = c ∈ (a, b) in (14) and (15). Then (16) holds and by adding (14) and (15),
and using (10), we obtain the following:

(17)

∫ b

a
a+

3 (t)|x(t)|pdt

<

∫ c

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

∫ c

a
a2(t)|y(t)|p′dt

+
∫ b

c
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

∫ b

c
a2(t)|y(t)|p′dt

=
∫ c

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

∫ b

a
a2(t)|y(t)|p′dt

=
∫ c

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

∫ b

a
a3(t)|x(t)|pdt

≤
∫ c

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

∫ b

a
a+

3 (t)|x(t)|pdt.

The first strict inequality in the above inequalities holds since x(t) is not a constant
solution (zero solution) of (4) and hence at least one inequalities in (14) or (15) is
strict. From the equation (10), we have

∫ b

a
a+

3 (t)|x(t)|pdt > 0,

which, together with (17), yields

(18)

1 <

∫ c

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

=
∫ b

c
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt.

From (18), we obtain

(19)

1 <

∫ c

a
a+

3 (t)ep
∫ t

a a1(s)dsdt

(∫ c

a
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

1 <

∫ b

c
a+

3 (t)ep
∫ t

a a1(s)dsdt

(∫ b

c
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

,

which implies that
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(20)

1∫ c

a
a+

3 (t)ep
∫ t

a a1(s)dsdt
<

(∫ c

a
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

1∫ b

c
a+

3 (t)ep
∫ t

a a1(s)dsdt

<

(∫ b

c
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

.

It follows from the first inequality of (18) that
(21)∫ c

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

≥
∫ c

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

∫ b

c
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

dt

>

(∫ b

c
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

.

Similarly, from the second inequality of (18) we can show that
(22)∫ b

c
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

≥
∫ b

c
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ c

a
e−p′

∫ t
a a1(s)dsa2(t)dt

∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

>

(∫ c

a
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

.

Adding (21) and (22), and applying (20), we obtain
(23)∫ b

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)p−1

dt

>

(∫ c

a
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

+
(∫ b

c
e−p′

∫ t
a a1(s)dsa2(t)dt

)p−1

> 1∫ c

a
a+

3 (t)ep
∫ t

a a1(s)dsdt
+ 1∫ b

c
a+

3 (t)ep
∫ t

a a1(s)dsdt

≥ 4∫ b

a
a+

3 (t)ep
∫ t

a a1(s)dsdt

.

Since AB ≤ (A+B)2

4 for any real numbers A and B, we have
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(24)

∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds

∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

≤ 1
4

(∫ t

a
e−p′

∫ s
a a1(τ)dτa2(s)ds +

∫ b

t
e−p′

∫ s
a a1(τ)dτa2(s)ds

)2

=
1
4

(∫ b

a
e−p′

∫ t
a a1(s)dsa2(t)dt

)2

.

Substituting (24) into (23), we get finally the result of Theorem 1

41−p

(∫ b

a
a+

3 (t)ep
∫ t

a a1(s)dsdt

)2 (∫ b

a
e−p′

∫ t
a a1(s)dsa2(t)dt

)2(p−1)

>

∫ b

a
a+

3 (t)ep
∫ t

a a1(s)dsdt

∫ b

a
a+

3 (t)ep
∫ t

a a1(s)ds

(∫ t

a
g(s)ds

∫ b

t
g(s)ds

)p−1

dt

> 4,

where

g(s) = e−p′
∫ s

a a1(τ)dτa2(s).

¤
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