ISSN 1226-0657

J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 18, Number 4 (November 2011), Pages 329–336

A REFINEMENT OF LYAPUNOV-TYPE INEQUALITY FOR A CLASS OF NONLINEAR SYSTEMS

Yong-In Kim

ABSTRACT. Some new Lyapunov-type inequalities for a class of nonlinear differential systems, which are natural refinements and generalizations of the well-known Lyapunov inequality for linear second order differential equations, are given. The results of this paper cover some previous results on this topic.

1. INTRODUCTION

As is well-known, the Lyapunov inequality [1] for the following second-order linear differential equation

(1)
$$x''(t) + q(t)x(t) = 0$$

states that if $q \in C[a, b]$ and x(t) is a solution of (1) such that x(a) = x(b) = 0, $x(t) \neq 0$ for $t \in (a, b)$, then the following inequality holds:

(2)
$$(b-a)\int_{a}^{b}q^{+}(t)dt > 4,$$

where $q^+(t) = \max\{q(t), 0\}$ and the constant 4 is sharp, which means that it can not be replaced by a larger number. In [5], Hartman obtained the following inequality:

(3)
$$\int_{a}^{b} q^{+}(t)(t-a)(b-t)dt > (b-a),$$

which implies (2) since for $t \in [a, b]$, we have

$$(t-a)(b-t) \le \frac{(b-a)^2}{4}.$$

Over the past few decades, there have been many new proofs and generalizations of the inequality (2). It has been generalized to nonlinear second order equations

© 2011 Korean Soc. Math. Educ.

Received by the editors July 26, 2011. Accepted October 20, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 34A12, 34A34.

Key words and phrases. Lyapunov-type inequality, nonlinear differential system.

[3, 10, 11], to delay differential equations[2], to higher order differential equations [9, 13, 14], to discrete linear Hamiltonian systems [4], and so on [6, 7, 8, 12].

In this paper, inspired by the work of Hartman [5], we obtain some new Lyapunovtype inequalities which cover (2) and (3) and some previous results on this topic.

2. Main Result and its Proof

Consider the following nonlinear differential system:

(4)
$$\begin{aligned} x' &= a_1(t)x + a_2(t)\phi_{p'}(y), \\ y' &= -a_3(t)\phi_p(x) - a_1(t)y, \end{aligned}$$

where $a_k \in C([a, b], \mathbb{R})$ for $1 \le k \le 3$, $a_2(t) > 0 \forall t \in [a, b]$, $\phi_p(u) = |u|^{p-2}u$ with p > 1 and $p' = \frac{p}{p-1} > 1$ is the exponent conjugate to p.

The main result of this paper is the following theorem:

Theorem 1. If x(t) is a nonzero solution of (4) such that x(a) = x(b) = 0 and $x(t) \neq 0 \forall t \in (a, b)$, then the following inequalities hold:

(5)

$$4^{1-p} \left(\int_{a}^{b} a_{3}^{+}(t) e^{pA_{1}(t)} dt \right)^{2} \left(\int_{a}^{b} g(t) dt \right)^{2(p-1)}$$

$$> \int_{a}^{b} a_{3}^{+}(t) e^{pA_{1}(t)} dt \int_{a}^{b} a_{3}^{+}(t) e^{pA_{1}(t)} \left(\int_{a}^{t} g(s) ds \int_{t}^{b} g(s) ds \right)^{p-1} dt$$

$$> 4,$$

where

$$A_1(t) = \int_a^t a_1(s)ds, \quad g(t) = e^{-p'A_1(t)}a_2(t).$$

If $a_1(t) \equiv 0$ in the system (4), then (4) reduces to the following nonlinear second order equation:

(6)
$$(r(t)\phi_p(x'))' + q(t)\phi_p(x) = 0,$$

where $r(t) = \frac{1}{a_2^{p-1}(t)}$, $q(t) = a_3(t)$. Hence, the inequalities in (5) reduce to the inequalities in the following Corollary 1.

Corollary 1. If x(t) is a solution of (6) such that x(a) = x(b) = 0 and $x(t) \neq 0 \forall t \in (a, b)$, then we have

(7)

$$4^{1-p} \left(\int_{a}^{b} q^{+}(t) dt \right)^{2} \left(\int_{a}^{b} \frac{dt}{r^{\frac{1}{p-1}}(t)} \right)^{2(p-1)}$$

$$> \int_{a}^{b} q^{+}(t) dt \int_{a}^{b} q^{+}(t) \left(\int_{a}^{t} \frac{ds}{r^{\frac{1}{p-1}}(s)} \int_{t}^{b} \frac{ds}{r^{\frac{1}{p-1}}(s)} \right)^{p-1} dt$$

$$> 4.$$

In particular, if $r(t) \equiv 1$ in the equation (6), then (6) reduces to the following equation

(8)
$$(\phi_p(x'))' + q(t)\phi_p(x) = 0,$$

and the inequalities in (7) further reduce to the inequalities in the following Corollary 2:

Corollary 2. If x(t) is a solution of (8) such that x(a) = x(b) = 0 and $x(t) \neq 0 \forall t \in (a, b)$, then we have

(9)

$$4^{1-p} \left(\int_{a}^{b} q^{+}(t) dt \right)^{2} (b-a)^{2(p-1)}$$

$$> \int_{a}^{b} q^{+}(t) dt \int_{a}^{b} q^{+}(t) \left[(t-a)(b-t) \right]^{p-1} dt$$

$$> 4.$$

Remark 1. Note that if p = 2, then (8) reduces to the equation (1). Thus, the inequalities (5), (7) and (9) are natural refinements and generalizations of the inequalities (2) and (3).

Proof of Theorem 1. Multiplying the first equation of (4) by y(t) and the second one by x(t), and adding the results, we get

$$(x(t)y(t))' = a_2(t)|y(t)|^{p'} - a_3(t)|x(t)|^p.$$

Integrating the above equation from a to b and using x(a) = x(b) = 0, we obtain

(10)
$$\int_{a}^{b} a_{2}(t)|y(t)|^{p'}dt = \int_{a}^{b} a_{3}(t)|x(t)|^{p}dt.$$

For any $t \in (a, b)$, by using the assumption x(a) = x(b) = 0, we obtain from (4) that

(11)
$$x(t) = e^{\int_{a}^{t} a_{1}(s)ds} \int_{a}^{t} e^{-\int_{a}^{s} a_{1}(\tau)d\tau} a_{2}(s)\phi_{p'}(y(s))ds$$
$$= -e^{\int_{a}^{t} a_{1}(s)ds} \int_{t}^{b} e^{-\int_{a}^{s} a_{1}(\tau)d\tau} a_{2}(s)\phi_{p'}(y(s))ds.$$

.

Now applying the Hölder inequality to the first equation of (11), we get

(12)
$$|x(t)| \le e^{\int_a^t a_1(s)ds} \left(\int_a^t e^{-p'\int_a^s a_1(\tau)d\tau} a_2(s)ds \right)^{\frac{1}{p'}} \left(\int_a^t a_2(s)|y(s)|^{p'}ds \right)^{\frac{1}{p}}.$$

Similarly, from the second equation of (11) we have

Similarly, from the second equation of (11) we have

(13)
$$|x(t)| \le e^{\int_a^t a_1(s)ds} \left(\int_t^b e^{-p'\int_a^s a_1(\tau)d\tau} a_2(s)ds\right)^{\frac{1}{p'}} \left(\int_t^b a_2(s)|y(s)|^{p'}ds\right)^{\frac{1}{p}}.$$

Let $d \in (a, b)$ be any fixed number. Then by using (12), we obtain

$$\begin{aligned} \int_{a}^{d} a_{3}^{+}(t) |x(t)|^{p} dt \\ (14) &\leq \int_{a}^{d} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} \int_{a}^{t} a_{2}(s) |y(s)|^{p'} ds dt \\ &\leq \int_{a}^{d} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt \int_{a}^{d} a_{2}(t) |y(t)|^{p'} dt dt \end{aligned}$$

Similarly by using (13), we obtain

$$\int_{d}^{b} a_{3}^{+}(t)|x(t)|^{p} dt$$

$$(15) \qquad \leq \int_{d}^{b} a_{3}^{+}(t)e^{p\int_{a}^{t}a_{1}(s)ds} \left(\int_{t}^{b} e^{-p'\int_{a}^{s}a_{1}(\tau)d\tau}a_{2}(s)ds\right)^{p-1} \int_{t}^{b}a_{2}(s)|y(s)|^{p'}dsdt$$

$$\leq \int_{d}^{b} a_{3}^{+}(t)e^{p\int_{a}^{t}a_{1}(s)ds} \left(\int_{t}^{b} e^{-p'\int_{a}^{s}a_{1}(\tau)d\tau}a_{2}(s)ds\right)^{p-1} dt \int_{d}^{b}a_{2}(t)|y(t)|^{p'}dt.$$

It is easy to see that the function

$$h_1(x) = \int_a^x a_3^+(t) e^{p \int_a^t a_1(s) ds} \left(\int_a^t e^{-p' \int_a^s a_1(\tau) d\tau} a_2(s) ds \right)^{p-1} dt$$

is nondecreasing for $x \in (a, b)$ and the function

$$h_2(x) = \int_x^b a_3^+(t) e^{p \int_a^t a_1(s) ds} \left(\int_t^b e^{-p' \int_a^s a_1(\tau) d\tau} a_2(s) ds \right)^{p-1} dt$$

is nonincreasing for $x \in (a, b)$. Now since $h_1(a) = h_2(b) = 0$, $h_1(b) > 0$ and $h_2(a) > 0$, it follows that there exists at least one $c \in (a, b)$ such that $h_1(c) = h_2(c) > 0$, that is,

(16)
$$\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt$$
$$= \int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt.$$

332

Let $d = c \in (a, b)$ in (14) and (15). Then (16) holds and by adding (14) and (15), and using (10), we obtain the following:

$$\begin{aligned} \int_{a}^{b} a_{3}^{+}(t) |x(t)|^{p} dt \\ < \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt \int_{a}^{c} a_{2}(t) |y(t)|^{p'} dt \\ &+ \int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt \int_{c}^{b} a_{2}(t) |y(t)|^{p'} dt \\ = \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt \int_{a}^{b} a_{2}(t) |y(t)|^{p'} dt \\ = \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt \int_{a}^{b} a_{3}(t) |x(t)|^{p} dt \\ \leq \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt \int_{a}^{b} a_{3}(t) |x(t)|^{p} dt. \end{aligned}$$

The first strict inequality in the above inequalities holds since x(t) is not a constant solution (zero solution) of (4) and hence at least one inequalities in (14) or (15) is strict. From the equation (10), we have

$$\int_{a}^{b} a_{3}^{+}(t) |x(t)|^{p} dt > 0,$$

which, together with (17), yields

(18)
$$1 < \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt$$
$$= \int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt.$$

From (18), we obtain

(19)
$$1 < \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} dt \left(\int_{a}^{c} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{p-1}$$
$$1 < \int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} dt \left(\int_{c}^{b} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{p-1},$$

which implies that

(20)
$$\frac{\frac{1}{\int_{a}^{c} a_{3}^{+}(t)e^{p\int_{a}^{t} a_{1}(s)ds}dt}}{\frac{1}{\int_{c}^{b} a_{3}^{+}(t)e^{p\int_{a}^{t} a_{1}(s)ds}dt}} < \left(\int_{c}^{b} e^{-p'\int_{a}^{t} a_{1}(s)ds}a_{2}(t)dt\right)^{p-1}.$$

It follows from the first inequality of (18) that (21)

$$\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt$$

$$\geq \int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \int_{c}^{b} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{p-1} dt$$

$$> \left(\int_{c}^{b} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{p-1}.$$

Similarly, from the second inequality of (18) we can show that (22)

$$\int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt$$

$$\geq \int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{c} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt$$

$$> \left(\int_{a}^{c} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{p-1}.$$

Adding (21) and (22), and applying (20), we obtain (23)

$$\begin{split} &\int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{p-1} dt \\ &> \left(\int_{a}^{c} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{p-1} + \left(\int_{c}^{b} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{p-1} \\ &> \frac{1}{\int_{a}^{c} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} dt} + \frac{1}{\int_{c}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} dt} \\ &\ge \frac{4}{\int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} dt}. \end{split}$$

Since $AB \leq \frac{(A+B)^2}{4}$ for any real numbers A and B, we have

334

(24)
$$\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds$$
$$\leq \frac{1}{4} \left(\int_{a}^{t} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds + \int_{t}^{b} e^{-p' \int_{a}^{s} a_{1}(\tau) d\tau} a_{2}(s) ds \right)^{2}$$
$$= \frac{1}{4} \left(\int_{a}^{b} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{2}.$$

Substituting (24) into (23), we get finally the result of Theorem 1

$$4^{1-p} \left(\int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} dt \right)^{2} \left(\int_{a}^{b} e^{-p' \int_{a}^{t} a_{1}(s) ds} a_{2}(t) dt \right)^{2(p-1)}$$

$$> \int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} dt \int_{a}^{b} a_{3}^{+}(t) e^{p \int_{a}^{t} a_{1}(s) ds} \left(\int_{a}^{t} g(s) ds \int_{t}^{b} g(s) ds \right)^{p-1} dt$$

$$> 4,$$

where

$$g(s) = e^{-p' \int_a^s a_1(\tau) d\tau} a_2(s).$$

References

- 1. A.M. Lyapunov: Sur une série relative a la théorie des équations différentielles linéaires avec coeficient périodiques. C. R. Math. Acad. Sci., Paris 123 (1896), 1248-1252.
- S.S. Cheng: Lyapunov inequalities for differential and difference equations. *Fasc. Math.* 23 (1991), 25–41.
- S.B. Eliason: A Lyapunov type inequality for certain nonlinear differential equation. J. London Math. Soc. 3 (1970), 461–466.
- G. Guseinov & B. Kaymakçalan: Lyapunov inequalities for discrete linear Hamiltonian system. Comp. Math. Appl. 45 (2003), 1399-1416.
- 5. P. Hartman: Ordinary Differential Equations, second ed. Birkhauser, Boston, 1982.
- C. Lee, C. Yeh, C. Hong & R.P. Agarwal: Lyapunov and Wirtinger inequalities. Appl. Math. Lett. 17 (2004), 847–853.
- 7. W. Leighton: On Lyapunov's inequality. Proc. Amer. Math. Soc. 33 (1972), 627-628.
- Z. Nehari: On an inequality of Lyapunov, In "Studies in Mathematical Analysis and Related Topics". pp. 256–261, Stanford Univ. Press, Stanford, CA, 1962.
- B.G. Pachpatte: On Lyapunov-type inequalities for certain higher order differential equations. J. Math. Anal. Appl. 195 (1995), 527–536.

- A. Tiryaki, M. Unal & D. Çakmak: Lyapunov-type inequalities for nonlinear systems. J. Math. Anal. Appl. 332 (2007), 497–511.
- 11. X. Wang: Lyapunov type inequalities for second order half-linear differential equations. submitted to J. Math. Anal. Appl.
- X. Yang: On inequalities of Lyapunov type. Appl.Math. Computation. 134 (2003), 293– 300.
- X. Yang & K. Lo: Lyapunov-type inequality for a class of even-order differential equations. Appl. Math. Computation 245 (2010), 3884–3890.
- 14. X. Yang, Y. Kim & K. Lo: Lyapunov-type inequality for a class of odd-order differential equations. J. Comput. Appl. Math. 234 (2010), 2962–2969.

Department of Mathematics, University of Ulsan, Ulsan 689-749, Korea *Email address*: yikim@mail.ulsan.ac.kr